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EFFECTS OF ERYTHROPOIETIN AND Hypericum Perforatum ON GENTAMICIN-

INDUCED AGT, β-catenin, iNOS AND eNOS IMMUNOREACTIVITIES 

 

 ABSTRACT  

 Gentamicin (GM) is an antibiotic used in the treatment of acute 

infections caused by gram- negative microorganisms. Erythropoietin 

(EPO) is a cytokine that regulates cell proliferation and 

differentiation and has physiological roles in tissue protection. 

Hypericum perforatum (HP) is a phytochemical antioxidant with free 

radical scavenging and cell rejenerative properties. This study aimed 

to examine the effects of EPO and HP on GM-induced angiotensinogen 

(AGT), β-catenin, inducible nitric oxide synthase (iNOS) and 

endothelial nitric oxide synthase (eNOS) immunoreactivities. 36 male 

Spraque-Dawley rats were divided into control, GM, GM+EPO, GM+HP, EPO 

and HP groups. It was determined that EPO and HP decreased the GM-

induced increased AGT, β-catenin, iNOS immunoreactivities and 

increased the decreased eNOS immunoreactivity. In conclusion, it is 

thought that the renoprotective effects of EPO and HP can regulate the 

immunohistochemical changes caused by GM in the kidney. 

 Keywords: Gentamicin, Erythropoietin, Hypericum perforatum, 

                Kidney, Immunohistochemistry 

 

 1. INTRODUCTION  

 Gentamicin (GM) is an effective antibiotic used in the treatment 

of acute and life-threatening infections caused by gram-negative 

microorganisms [1]. Especially after long-term treatment, 10-30% of 

patients exposed to this drug have a risk of nephrotoxicity pathology 

[2]. Despite its adverse side effects such as nephrotoxicity and 

ototoxicity, GM is still used to combat microorganism species that 

develop resistance to some antibiotics [3]. Although the mechanisms 

underlying GM nephrotoxicity are unclear, research suggest that 

gentamicin nephrotoxicity is a complex and multifaceted process in 

which gentamicin triggers cellular responses involving multiple 

pathways that culminate in renal damage and necrosis [1 and 4]. 

Therefore, the use of agents that control these cellular responses 

resulting from GM-induced tissue damage may be promising in the 

development of an effective preventive treatment [5]. Erythropoietin 

(EPO) is known as a hematopoietic hormone produced in the kidney and 

fetal liver in response to hypoxia, inflammation and cell death [6]. 

It has been stated that EPO which is known to have important 

physiological roles on general tissue protection, performs this 

protection via transmembrane receptors (EPO-R) expressed in different 

tissues [7 and 8]. It has been reported that EPO-R is found in tubular 

epithelial and endothelial cells, especially in the kidney, and has a 

protective effect in acute kidney injury [9]. Therefore, as a 
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therapeutic agent, EPO has been shown to have a nephroprotective 

effect in various experimental models of kidney injury [10]. Hypericum 

perforatum (HP), known as St. John’s Wort (SJW), is a perennial herb 

with phytochemical properties used in traditional medicine all over 

the world [11]. This plant is known to contain bioactive compounds 

such as hyperforin, quercetin, resveratrol, and flavonoid and xanthone 

derivatives [12]. It has been reported that HP which has been reported 

to have an anti-inflammatory effect and to prevent ROS-induced DNA 

damage and apoptosis, is widely used for the treatments of 

nephrotoxicity [11 and 13].  

 

2. RESEARCH SIGNIFICANCE  

Some of the nephrotoxicity that occurs in response to kidney-

damaging drugs or toxins has been attributed to nephrotoxic drugs. 

Drug-induced toxicity is a common problem in clinical medicine, and 

these drugs can damage the kidney through a variety of mechanisms, 

including structural and functional changes. GM is a potent, broad-

spectrum antibiotic used to defend against infections triggered by 

gram-negative microorganisms. However, GM, which is frequently used 

due to its low cost and sustained effect, has limited therapeutic 

efficacy as it triggers nephrotoxicity. It is known that some plants 

used for medicinal purposes and therapeutic agents with high 

antioxidant content have protective effects on GM-induced cell damage. 

Particularly considering that these agents prevent or ameliorate GM 

nephrotoxicity, this study aimed to examine the regulatory effect of 

EPO and HP on the immunohistochemical changes resulting from this 

nephrotoxicity. 

 Highlights:  

 Induction of nephrotoxicity by GM in rats 

 Use of EPO and HP on immunohistochemical changes caused by GM-

induced nephrotoxicity 

 Determination of the regulatory effects of EPO and HP on altered 

immunoreactivity due to GM-induced nephrotoxicity. 

 

 3. EXPERIMENTAL METHOD-PROCESS 

 3.1. Chemicals 

GM (160mg/2ml, Ibrahim Etem Menarini group, Istanbul, TR), EPO 

(Dropoetin, 4000IU/0.4ml, Drogsan, Istanbul, TR) and HP (St. John’s 

Wort, 300mg/kg, Solgar, Leonia, USA) were obtained from various 

companies and other chemicals were obtained from Sigma-Aldrich 

Chemical Co. (St. Louis, MO, USA). 

 

3.2. Animals 

In this study, 36 male Spraque-Dawley rats, 6-8 weeks old, 

weighing 280-300g, were used. The rats were obtained from Firat 

University Experimental Research Center (Elazig, Turkey). During the 

study period, the rats were housed under standard laboratory 

conditions (40%–60% humidity, 24±3°C temperature, and 12 hours light-

12 hours dark cycle), food and water was provided ad libitum. All the 

experiments were approved by the local ethics committee of the Firat 

University (Ethic no: 15.01.2020-2020/01) followed by Animal Research: 

Reporting of In Vivo Experiments guidelines and National Institutes of 

Health Animal Research guidelines. 

 

3.3. Experimental Design 

The rats were divided into 6 groups, 6 in each group, and the 

study continued for 9 days. In the control group, 0.5ml isotonic 

saline was administered daily intraperitoneally (ip). In the GM group, 
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at a dose of 100mg/kg/BW/day Gentamicin was administered ip with 0.5ml 

isotonic saline [14]. In the GM+EPO group, at a dose of 

100mg/kg/BW/day Gentamicin was administered ip with 0.5ml isotonic 

saline and at a dose of 1000IU/kg/BW Dropoetin was administered ip on 

the 1st, 5th and 9th days of the study period [15]. In the GM+HP 

group, at a dose of 100mg/kg/BW/day Gentamicin was administered ip 

with 0.5ml isotonic saline and at a dose of 200mg/kg/BW/day HP was 

administered by gavage with 0.5ml isotonic saline [16]. In the EPO 

group, at a dose of 1000IU/kg/BW Dropoetin was administered ip on the 

1st, 5th and 9th days of the study period. In the HP group, at a dose 

of 200mg/kg/BW/day HP was administered by gavage with 0.5ml isotonic 

saline. All rats were sacrificed under ether anesthesia 24 hours after 

the last administration. Then, kidney tissues were taken by laparotomy 

and they were placed in fixation solution for immunohistochemical 

examinations. 

 

3.4. Immunohistochemical Analysis 

The Avidin-Biotin-Peroxidase Complex (ABC) procedure was applied 

to the tissue sections [17]. In this method, it was used that as 

primer antibodies angiotensinogen (AGT) polyclonal antibody (Catalog 

no: PA5-33340, dilution ratio 1/200; Invitrogen, USA), β-catenin 

polyclonal antibody (Catalog no: 71-2700, dilution ratio 1/200; 

Invitrogen, USA), inducible nitric oxide synthase (iNOS) polyclonal 

antibody (Catalog no: bs-22924R, dilution ratio 1/200; Bioss, USA)and 

endothelial nitric oxide synthase (eNOS) polyclonal antibody (Catalog 

no: bs-0163R, dilution ratio 1/200; Bioss, USA). The staining was 

performed with the immunohistochemistry kit (IHC kit, Catalog no: TP-

015-HD, UltraVision Detection System, Anti-Polyvalent, HRP/DAB; Thermo 

Fisher Scientific Co., USA) used for the other steps according to the 

manufacturer’s instructions. The staining was completed with 3,3ʹ-

diaminobenzidine (DAB) chromogen and counterstained with Mayer’s 

hematoxylin. Immunohistochemical staining was calculated with a 

numerical score of 0–3, with 0=negative, 0.5=trace, 1=mild, 

2=moderate, and 3=intense. Negative, <25%, 26%–50%, 51%–75%, and 76%–

100% areas were assigned values of 0, 0.1, 0.4, 0.6, and 0.9, 

respectively. Final histoscore calculation was performed using the 

following formula Histoscore=AreaxDensity [18]. 

 

3.5. Statistical Analysis 

Statistical data were analyzed with the IBM SPSS/PC (Version 

21.0, IBM Co., North Castle, New York, USA) software program. Data 

were presented as mean ± standard deviation. Differences between 

groups were analyzed using one-way analysis of variance (ANOVA) and 

the posthoc Duncan test. Statistical significance was determined as 

p<0.05. 

 

 4. RESULTS AND DISCUSSION 

The immunohistochemical histoscores of the kidney tissues in all 

groups are presented in Table 1. 

 

Table 1. Effect of EPO and HP on GM-induced AGT, β-catenin, iNOS and 

eNOS immunoreactivities 

Groups AGT β-catenin iNOS eNOS 

Control  0.05±0.01c 0.06±0.03c 0.05±0.08c 1.10±0.15ab 

GM 2.70±0.13a 2.67±0.11a 2.70±0.10a 0.83±0.08b 

GM + EPO 1.19±0.11b 1.19±0.18b 1.20±0.14b 1.66±0.11a 

GM + HP 1.17±0.09b 1.18±0.12b 1.30±0.12b 1.72±0.17a 

EPO 0.06±0.03c 0.08±0.07c 0.06±0.03c 1.22±0.10ab 

HP 0.05±0.02c 0.07±0.01c 0.05±0.01c 1.25±0.09ab 
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Data are given as mean ± standard deviation for each group. 
ap<0.05 for comparison between GM group and other groups; bp<0.05 for 

the comparison between the GM group and the GM+EPO and GM+HP groups; 
cp<0.05 for comparison between Control, EPO and HP groups and other 

groups. GM: Gentamicin, EPO: Erythropoietin, HP: Hypericum perforatum, 

AGT: angiotensinogen, iNOS: inducible nitric oxide synthase and eNOS: 

endothelial nitric oxide synthase. AGT immunoreactivity was observed 

to be similar in the control, EPO and HP groups. Compared to the 

control group, this immunoreactivity in the GM group was found to be 

increased especially in the proximal and distal tubules. On the other 

hand, it was determined that the immunoreactivity in the tubules was 

decreased in the GM+EPO and GM+HP groups compared to the GM group. The 

immunohistochemical analysis of AGT immune reaction in the kidney 

tissues in all groups is shown in Figure 1. 

 
Figure 1. Immunohistochemical analysis of AGT immune reaction in the 

kidney tissues in all groups, GM: Gentamicin, EPO: Erythropoietin, HP: 

Hypericum perforatum, AGT: Angiotensinogen, gl: glomerulus, dt: distal 

tubule, pt: proximal tubule, Scale bar: 100µm 

  

β-catenin immunoreactivity was observed to be similar in the 

control, EPO and HP groups. Compared to the control group, this 

immunoreactivity in the GM group was found to be increased especially 

in the glomerular areas. However, it was noted that the 

immunoreactivity in the GM+EPO and GM+HP groups was decreased compared 

to the GM group. The immunohistochemical analysis of β-catenin immune 

reaction in the kidney tissues in all groups is shown in Figure 2.  
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Figure 2. Immunohistochemical analysis of β-catenin immune reaction in 

the kidney tissues in all groups, GM: Gentamicin, EPO: Erythropoietin, 

HP: Hypericum perforatum, gl: glomerulus, dt: distal tubule, pt: 

proximal tubule, Scale bar: 100µm 

 

 
Figure 3. Immunohistochemical analysis of iNOS immune reaction in the 

kidney tissues in all groups, GM: Gentamicin, EPO: Erythropoietin, HP: 

Hypericum perforatum, iNOS: inducible nitric oxide synthase, gl: 

glomerulus, dt: distal tubule, pt: proximal tubule, Scale bar: 100µm 
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iNOS immunoreactivity was observed to be similar in the control, 

EPO and HP groups. This immunoreactivity was observed to be increased 

in the glomerular, intertubular and tubular regions in the GM group 

compared to the control group. The intensity of immunoreactivity in 

these regions was seen to be decreased in the GM+EPO and GM+HP groups 

compared to the GM group. The immunohistochemical analysis of iNOS 

immune reaction in the kidney tissues in all groups is shown in Figure 

3.  

 

 
Figure 4. Immunohistochemical analysis of eNOS immune reaction in the 

kidney tissues in all groups, GM: Gentamicin, EPO: Erythropoietin, HP: 

Hypericum perforatum, eNOS: endothelial nitric oxide synthase, gl: 

glomerulus, dt: distal tubule, pt: proximal tubule, Scale bar: 100µm 

 

eNOS immunoreactivity was observed to be similar in the control, 

EPO and HP groups. It was noted that this immunoreactivity was 

decreased in the glomerulus and renal tubules of the GM group compared 

to the control group. However, it was determined that the intensity of 

immunoreactivity increased in the GM+EPO and GM+HP groups compared to 

the GM group. The immunohistochemical analysis of eNOS immune reaction 

in the kidney tissues in all groups is shown in Figure 4. 

It is known that intrarenal RAS expression is significantly 

correlated with markers of acute tubular injury and may be an 

indicator of the severity of acute tubular necrosis [19]. The presence 

of AGT reflecting this expression in the proximal tubules and its 

secretion into the lumen have been associated with the severity of 

chronic kidney injury [20]. In a study, it was stated that strong AGT 

immunoreactivity especially in the proximal and distal tubules in 

overexpression of the intrarenal RAS system determines the severity of 

acute tubular necrosis [19]. In our study, we first identified intense 

AGT immunoreactivity, especially in the proximal and distal tubules, 

due to GM nephrotoxicity. In this context, the strong localization of 

AGT in necrotized tubules in our study may suggest that this substrate 

may be a biomarker candidate in GM nephrotoxicity. It has been 
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reported that inhibition of RAS activity is renoprotective and can 

slow or even stop the progression of nephropathies [21]. EPO, whose 

renoprotective effects are known, has been reported to have beneficial 

effects on the RAS and aldosterone system (RAAS). Although the 

mechanism of these effects has not been fully determined, it has been 

stated that EPO mediates the suppression of RAS and aldosterone [22]. 

In addition, the effects of treatment with EPO on the RAAS system at 

the molecular level in rats were evaluated and it was reported that 

both renin mRNA and AGT mRNA levels in the kidney were increased by 

EPO [23]. In the light of this information, we observed that EPO 

reduced the increase in AGT immunoreactivity in GM-induced 

nephrotoxicity. Therefore, it can be said that EPO exhibits a 

nephroprotective effect against kidney damage through inhibition of 

RAS. In addition, AGT mRNA/protein expression, which is the only 

substrate of renin, known as the rate-limiting enzyme of the RAS 

system, is known to exist in the proximal tubule cells of the kidneys 

[24]. In addition, studies in which excessive activation of the RAS 

system was inhibited by various angiotensin-converting enzyme (ACE) 

inhibitors were reported to have a renoprotective effect of RAS 

blockade [25]. It has been reported that HP has an antihypertensive 

effect in the treatment of some cardiovascular diseases, especially 

with its newly discovered ACE inhibitor activity [26]. In our study, 

we found that HP reduced the increase in GM-induced AGT 

immunoreactivity. In the light of this information, it can be 

predicted that HP reduces the systemic adverse effects of RAS through 

its ACE inhibitor effect. 

As a signaling protein, β-catenin, which plays a role in 

important physiological processes including organ development, tissue 

homeostasis and damage repair, has been reported to be important for 

Wnt signal-dependent nephron formation at the renal level [27 and 28]. 

While the Wnt/β-catenin signaling mechanism is low in normal kidneys, 

this mechanism is upregulated in rat models with acute and chronic 

kidney injury [29 and 30]. It has been determined that this signal 

plays a role in the proliferation and in the regulation of cell cycles 

of intact renal tubular cells after injury [31]. It has been reported 

that β-catenin-dependent signaling pathway is effective in GM-induced 

nephrotoxicity and β-catenin levels increase with this nephrotoxicity 

[32]. We first identified the increased β-catenin immunoreactivity in 

GM-induced nephrotoxicity in our study. Therefore, it can be said that 

the β-catenin signaling pathway is activated to support cell survival 

against tubular damage caused by GM, and its localization increases 

accordingly. It is stated that the regenerative effects of EPO are due 

to the stimulation of angiogenesis, cell proliferation and cell 

differentiation, which reduces cell damage, promotes repair and 

regulates physiological functions [33 and 34]. In a study on EPO used 

against GM nephrotoxicity, it was reported that β-catenin positivity 

decreased in nephrogenic bodies and tubules [35]. Similarly, in our 

study, we found that increased β-catenin immunoreactivity in GM-

induced nephrotoxicity was reduced by EPO treatment. According to the 

data of ours and other studies, it can be said that EPO, which has a 

wide range of regenerative effects, regulates the activation of β-

catenin especially in GM nephrotoxicity. In addition, it has been 

reported that activation of Wnt/β-catenin signaling pathway plays an 

important role in adaptive repair of acute kidney injury and 

attenuation of regeneration [29 and 36]. In a recent study, it was 

proven that anticarcinogenic hyperforin from the HP plant leads to 

inhibition of canonical Wnt/β-catenin signaling, an oncogenic pathway 

that contributes to tumorigenesis. It has also been demonstrated that 

hyperforin through inhibition of this pathway reduces cell 
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proliferation and anchorage-independent growth [37]. In our study, we 

determined that increased β-catenin immunoreactivity in GM-induced 

nephrotoxicity decreased with HP administration. Based on this, it can 

be assumed that HP, known for its widespread reparative effects, 

regulates GM-induced β-catenin activation. 

It is known that nitric oxide (NO) production is usually carried 

out by iNOS [38] and a small amount of eNOS [39]. It has been reported 

that excessive NO production is associated with oxidative stress [40] 

and is due to increased iNOS expression induced by GM [41]. Increased 

iNOS-mediated NO concentration has been reported to lead to DNA damage 

and apoptosis and thus trigger renal failure as a result of iNOS 

induction and tubular cytotoxicity [42]. Studies have shown that iNOS 

expression increases and kidney damage is induced in GM-induced 

nephrotoxicity [43 and 44]. Conversely, eNOS expression was found to 

be decreased in GM-induced nephrotoxicity [45]. In this study, we 

determined increased iNOS and decreased eNOS immunoreactivity in GM-

induced nephrotoxicity. As a result of GM application, it can be said 

that NO production can be regulated by up-regulation of iNOS 

expression and down-regulation of eNOS expression. There are studies 

showing that the inhibition of NO production in GM-induced 

nephrotoxicity can be improved by using various renoprotective agents 

[5, 43, 44 and 46]. In particular, it has been reported that the 

decrease in NO level may be due to the decrease in iNOS level. 

However, it has been reported that the low amount of NO produced by 

eNOS and its synthesis in large amounts by iNOS cause the eNOS level 

to remain high [39]. It is known that EPO, which has a cytoprotective 

effect, achieves this effect through the regulation of EPO-induced NO 

production and especially eNOS [47 and 48]. It has also been stated 

that EPO also increases NO bioavailability by upregulating its 

expression through transcription and activation of eNOS [47 and 49]. 

We found that increased iNOS immunoreactivity decreased and decreased 

eNOS immunoreactivity increased with EPO treatment in GM-induced 

nephrotoxicity. Accordingly, it can be thought that the cytoprotective 

effect of EPO occurs by modulation of iNOS and eNOS expressions. In 

addition, some antioxidant flavonoids [50] contained in HP have been 

reported to inhibit NOS activity [51]. In a study, the inhibitory 

effect of HP on iNOS was demonstrated [52]. Basically, it is known 

that the decrease in iNOS level is associated with the decrease in NO 

production, but the eNOS level, which contributes less to NO 

production, remains high [39]. It has been reported that NO produced 

by iNOS has a pathogenic role in GM-induced nephrotoxicity [53] and HP 

application reduces the increase in GM-induced iNOS [54]. We 

determined that increased iNOS immunoreactivity decreased and 

decreased eNOS immunoreactivity increased with HP administration in 

GM-induced nephrotoxicity. In light of these results, it can be 

thought that treatment of increased iNOS and decreased eNOS 

expressions with HP may reduce GM-induced immunohistochemical changes. 

 

 5. CONCLUSION AND RECOMMENDATIONS  

 GM-induced kidney damage may cause changes in the expression of 

some immunohistochemical markers. In this study, the regulatory 

effects of EPO and HP, which have nephroprotective properties, on AGT, 

β-catenin, iNOS and eNOS immunoreactivities resulting from GM-induced 

kidney damage were revealed. Since HP's damage-regulating effect is 

more pronounced, it can be stated that its use as a natural product 

suitable for daily nutrition will be particularly attractive. As a 

result, we think that alternative uses of these pharmacological agents 

in various kidney injuries, especially GM-induced, can be demonstrated 

by applying different parameters and techniques. 
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