Engineering Sciences Status : Review
ISSN: 1308 7231 Received: 05.07.2025
Article ID: 1A0501 Accepted: 20.10.2025

Maral A. Mustafa
Graduate School of Natural and Applied Sciences, Department of
Computer Engineering, Gazi University, 2483330440l@gazi.edu.tr,
Ankara-Turkiye
Production Mechanics Techniques, Kirkuk Technical Institute, Northern
Technical University, maralanwer@ntu.edu.iq, Kirkuk-Irag
O. Ayhan Erdem
Department of Computer Engineering, Faculty of Technology,
Gazi University, ayerdem@gazi.edu.tr, Ankara-Tirkiye
Esra Sogit
Department of Computer Engineering, Faculty of Technology,
Gazi University, esrasogut@gazi.edu.tr, Ankara-Tirkiye

DOI http://dx.doi.org/10.12739/NWSA.2025.20.4.1A0501
ORCID ID 0000-0002-0601-3457 | 0000-0001-7761-1078 | 0000-0002-0051-2271
Corresponding Author | Esra sogit

ARTIFICIAL INTELLIGENCE IN BREAST CANCER DIAGNOSIS: CURRENT
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ABSTRACT

Breast cancer is the commonly diagnosed cancer in women all over
the world, and its ©prevalence 1is constantly increasing despite
significant advancements in the area of early diagnosis and individual
treatment approaches. Nevertheless, present-day workflows in diagnostic
interventions are struggling with problems such as overdiagnosis in
populations with low risks, growing workloads among radiologists and
pathologists, and inconsistencies in the interpretation of the findings
of the imaging and pathological studies. In that regard, artificial
intelligence (AI) has proven to be an effective solution to these
drawbacks by enhancing image analysis, automating the working processes
that consume a lot of labor, and facilitating clinical decision-making.
This paper provides a narrative review of the recent AI implementation
in breast cancer screening and diagnosis, including malignancy detection
and classification, tumor segmentation, prediction of molecular subtype,
and recurrence or metastatic risk. The data sources are analyzed both
in imaging and non-imaging, which are mammography, ultrasound, magnetic
resonance imaging (MRI), histopathology, clinical variables, and multi-
modal data integration. Also, the reviewed articles identify explainable
artificial intelligence (XAI) methods, including SHAP, Grad-CAM, and
LIME, as central to improving the transparency, interpretability, and
confidence clinicians have in AlI-assisted systems. On the whole, the
current evidence indicates that AI-based tools have the potential to
increase the level of diagnostic accuracy, minimize inter-observer
variability, and provide a personalized risk evaluation and treatment
planning. However, there are still multiple obstacles to widespread
clinical implementation such as heterogeneity of datasets, a lack of
external and prospective validation, interpretability issues, and
constraints based on real-world application. Future studies must,
therefore, focus on the creation of more and Dbetter-quality data,
standard assessment guidelines, solid explainability models, and future
clinical trials to allow the safe, productive, and fair integration of
AI into regular breast cancer care.
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1. INTRODUCTION

Breast cancer has been on a gradual rise and it is currently the most
frequently diagnosed malignancy in women all over the world, outdoing lung
cancer in incidence [1 and 2]. Although this burden is increasing, screening
and the creation of individual treatment options have led to a dramatic drop
in mortality related to breast cancer and better patient outcomes [l and 3].
Nevertheless, there are still significant issues in the diagnostic pathway
such as overdiagnosis in low-risk groups, increased strain on the radiology
and pathology services, and inconsistency of image and specimen
interpretation [4, 5, 6 and 7]. Moreover, lack of access to diagnostic
tests, as well as high cost of advanced tests, still impede timely and fair
care in most locales [8, 9, 10, 11 and 12]. The diagnostic process of breast
cancer 1is multi-step, usually involving screening, assessment by imaging
techniques, tissue biopsy, pathology, staging, molecular and biomarker
profiling, and treatment planning, and in some cases, neoadjuvant therapy,
surgery, and systemic adjuvant treatments [17 and 18]. However, the existing
screening procedures fail to best consider diversity in personal risk, and
they might expose the lower-risk groups to additional recall and therapy; in
the United Kingdom, an autonomous analysis of randomized trials estimated a
19% risk of overdiagnosis with screening [4]. Despite the use of risk
stratification tools to inform intensified surveillance, including annual
MRI in women with a lifetime breast cancer risk of 220% [19], most models
are based on non-routinely measured variables, have low predictive power
(often AUC<0.7), and most tend to select those cancers, which have a better
prognosis, thus restricting their population-level influence [20, 21 and
22]. At the same time, shortages in the workforce, as well as growing imaging
volumes, further burden clinical services: it is estimated that the United
Kingdom will be short of radiologists by 40% in 2027 [5], and the workload
of a pathologist per practitioner in the United States has gone up by 41.73
in the last ten years [6].

These stresses are augmented by the time expenditure of sophisticated
imaging including digital breast tomosynthesis (DBT)and MRI [23], the
workload of the pathological procedures (e.g., the extra arrangement of
slides) [7], and the consistency of agreement (between 75 and 88 percent)
even in focused diagnostic settings [8 and 11]. Diagnostic proficiency in
radiology 1is strongly influenced by clinicians’ experience and training,
which are known contributors to interpretive accuracy and error
susceptibility [24]. However, substantial inter- and intra-reader
variability persists in mammography interpretation, reflecting differences
in training, experience, and interpretive approaches among radiologists [25].
Additionally, expensive and infrastructure-based tests, such as contrast-
enhanced mammography, MRI, and gene tests such as Oncotype Dx are not
accessible to all institutions and patients and may need referral or specimen
transfer, and some tissue-destroying tests can limit follow-up biomarker or
genetic measures [12]. Artificial intelligence (AI) has become one of the
most promising methods to assist breast cancer diagnosis, enhance the
interpretation of the images, automate time-consuming processes, and enabling
predictive analytics in the field of radiology and pathology [13, 14, 15
and 16]. In line with this, this review summarizes the existing applications
of AT in all major diagnostic tasks and data types to breast cancer care and
describes the evidence base that supports their potential clinical utility.

2 . RESEARCH SIGNIFICANCE

This review focuses on the role of artificial intelligence in
addressing the major limitations of current breast cancer diagnosis and
screening workflows. AI has the potential to reduce overdiagnosis, improve
the accuracy and consistency of image interpretation, alleviate clinician
workload, and support personalized treatment planning. A particular
emphasis 1s placed on radiology and pathology, where AI can assist in
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detecting early-stage cancers, characterizing lesions, and predicting
outcomes. By integrating image-based and non-image-based data, AI systems
can support risk stratification, subtype classification, and recurrence
prediction, helping clinicians make more informed decisions and optimize
patient management. This review further contributes by highlighting the
importance of explainable AI (XAI) approaches, which are essential for
building trust, transparency, and accountability in AI-assisted medical
decision-making. In high-stakes domains such as oncology, interpretability
is a crucial factor for clinical adoption.
Highlights:

e Tt provides a comprehensive and up-to-date synthesis of artificial
intelligence applications in breast cancer diagnosis, systematically
outlining how AI addresses major clinical challenges such as
overdiagnosis, interpretive variability, and increasing diagnostic
workload.

e Tt offers a focused and structured evaluation of XAI methods—
including SHAP, Grad-CAM, and LIME-highlighting their role in
enhancing transparency, reliability, and clinical trust, which are
essential for safe integration of AI systems in oncology.

e Tt critically analyzes both imaging-based and non-imaging multimodal
datasets, identifying current capabilities, limitations, and future
research directions for AI-driven risk stratification, malignancy
classification, early detection, and personalized treatment
planning.

3. ANALYTICAL STUDY (LITERATURE REVIEW METHOD)

This work is designed as a comprehensive analytical review of the
literature rather than an experimental bench or clinical trial study. This
review 1s 1in narrative format with a synthesized and reproducible
literature search strategy. Six large electronic databases, namely PubMed,
IEEE Xplore, Scopus, Web of Science, ScienceDirect, and Google Scholar,
were searched wusing combinations of key words, i.e. breast cancer,
artificial intelligence, machine learning, deep learning, screening,
segmentation, classification and recurrence prediction. This search was
employed, using common variations of terms such as explainable,
transparency, black box, understandable, and comprehensible. Peer-reviewed
journal articles and conference papers utilizing AI- or ML-based techniques
to diagnose or prognose breast cancer based on imaging, clinical, genetic,
or multi-modal data were included, and the literature was reviewed
primarily in the 2012-2024 period to give the methodological and historical
background. Articles written in non-English, editorials, and studies that
contained an insufficient amount of methodological description and articles
that did not have a clear focus on the diagnostic or prognostic tasks in
breast cancer were excluded. After the screening of the titles and the
abstracts, full-text assessment was performed in order to verify relevance
and quality, and to identify more studies through a snowballing strategy
that relied on the list of references of the included articles.

4. FINDINGS AND DISCUSSIONS

4.1. Breast Cancer Diagnosis: An Overview

The modern methods of breast cancer diagnosis are more and more
incorporating both the imaging and non-imaging data. These datasets can
undergo machine learning (ML) algorithms to identify suspicious areas or
abnormalities that can indicate the presence of tumors. These methods
formulate clinically significant data at several points in the diagnostic
process and have been found beneficial in enhancing the early detection of
breast cancer [26].
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One of the key diagnostic activities is malignancy classification
that will define the presence of benign or malignant abnormalities and will
directly affect further clinical management [27]. ML models process image-
derived feature to support this process; these include features like shape,
texture and intensive patterns. Trained on big and varied data these models
are able to determine the probability of malignancy, thus helping
clinicians make evidence-based decisions [28]. Moreover, breast cancer is
biologically heterogeneous and may be subclassified into molecular subtypes
according to given biomarkers, all linked to a different prognostic and
therapeutic consequence. Viable subtype classification 1like triple-
negative, HER2-positive and hormone receptor-positive breast cancers are,
thus, an essential aspect of current diagnostic and treatment planning
interventions [29]. Clinicians can develop more disciplined and selective
treatment plans by classifying instances into different subgroups to make
them available to the clinicians in a position to incorporate them into
their treatment plans. In order to better predict the subtype and have a
more optimal treatment plan, machine learning algorithms analyze genetic
profiles, patterns of gene expression, and clinical history.

This process of dividing the pictorial image or area into segments
or places of interests 1is called segmentation [26]. The imaging data
segmentation is relevant in the diagnosis of breast cancer to identify
whether there exists any suspicious lesion or a definition of tumor
boundaries [30]. It is an important stage to define the extent of the tumor
and its configuration and the basis of other work like the volume of tumor
or the data obtained. Their performance 1is highly improved, which
significantly helps in detecting breast cancer early because of the
effectiveness of machine learning, particularly deep learning in cutting
the breast lesion of the medical image [31].

In addition to this, another major aspect of breast cancer therapy
and subsequent follow-up is a capacity to determine metastases formation
and cancer recurrence estimation [32]. This is a type of work that entails
an estimation of the possibilities of cancer developing again or further
spreading in a distant part of the body. Since clinical markers are useful
in measuring the risk of either relapse or metastasis, machine learning
models, which by definition, demand the wuse of statistics in their
algorithms, can handle multiple forms of data inputs in the form of imaging,
genetic data, clinical summation, and electronic health records. Therefore,
these predictions can be implemented successfully to tailor the further
treatment of patients in an effort to avoid adverse effects and improve
patient outcomes.

These activities ought to be combined and modeled together to come
up with a better and more dynamic system of breast cancer diagnosis.
Specifically, to enhance the accuracy of subtype classification, it is
necessary to incorporate complementary processes like tumor segmentation
and histological grading to give important structural and morphological
data that are critical in accurate cancer characterization [33].

4.2. Explainable Artificial Intelligence (XAI)

The concept of interpretability in machine learning (ML) 1is the
capability to comprehend the way a model acts; how it makes predictions.
More importantly perhaps, this type of model did not particularly claim to
provide specification as to why it did, but provided an organic view as to
how they actually operated. Therefore, it could be assumed that not every
interpretable model is completely explainable despite the interpretability
being one of the main factors that maximize explainability. By
interpretability in its turn, we also imply making forecasts regarding
other potential situations and evaluating the modifications of some inputs.
Considering both the obvious and the unobvious aspects, the purpose is not
only to learn more deeply about the ML model but also to provide a more
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detailed description of its activity.

Nonetheless, a number of AI models are not easily interpretable, and
thus, the entire picture cannot be viewed behind the result. Based on this
lack of transparency, it 1is easy to argue about their decision-making
processes as a result of such reasons. Whereas ask and answer why is the
most one can do using a model to determine how a model arrived at a decision
based on the inputs, explainability goes one step higher in showing how a
model reacts to changes in the inputs and how the output changes as a
result of changes in inputs. This distinction is critical particularly in
the medical institution where the decisions made are accompanied by the
consequences of the lives of people who are the recipients of the given
services. The case of a doctor being unable to prescribe their patients
medication without knowing how the drugs work is a good example, that the
doctor should use algorithms and not know how the recommendations are
generated. Practitioners lose the openness to trust or use the AI technology
especially when the practitioner is not able to ascertain the results
produced by the technology. To be trustworthy and just AI approaches must
be clarified and comprehended particularly in life and death fields 1like
medicine, finance and law that have far reaching impacts.

There are two types of explainable AI that are post and intrinsic.
The former is what is referred to as transparent models: they are inherently
comprehensible and explainable. Conversely, post-hoc explainability
techniques are of two types: model-specific approaches and model-agnostic
approaches. Post-hoc or surrogate models are used to replicate the decision
making of models the working of which would otherwise be incomprehensible.
They are unique like the structure of a model and comprise saliency maps
and Grad-CAM. Nonetheless, SHAP and LIME and other such model-agnostic
explanations could be helpful and can be used to shed light on the
prediction mechanisms of many models.

The methods of XAI may be divided into two broad groups, including
global and local explanations. Global explainability attempts to describe
the general behavior of the model as such that it exposes the general
decision-making trends and feature dependencies of the model throughout
the dataset. Conversely, local explainability is concerned with explaining
why particular ©predictions have occurred, providing case-specific
information on how particular inputs affect a single model output.

The XAI models which have been most actively used alongside ML and
deep learning (DL) models in breast cancer studies are discussed in the
following sections. The explanation of XAI models is then given, as well
as the summary of the relevant studies done in the sphere of breast cancer.

4.2.1. SHapley Additive exPlanations (SHAP)

The concept of interpretability in ML is the capability to comprehend
the way a model acts; how it makes predictions. More importantly perhaps,
this type of model did not particularly claim to provide specification as
to why it did, but provided an organic wview as to how they actually
operated. Therefore, it could be assumed that not every interpretable model
is completely explainable despite the interpretability being one of the
main factors that maximize explainability. By interpretability in its turn,
we also imply making forecasts regarding other potential situations and
evaluating the modifications of some inputs. Considering both the obvious
and the unobvious aspects, the purpose is not only to learn more deeply
about the ML model but also to provide a more detailed description of its
activity.

SHAP [34] is an approach that was proposed by Lundberg and offers a
powerful and interpretable framework used to understand the predictions of
ML models assigning importance to each single feature in relation to a
given output. Local and global interpretability: It allows the
quantification of the contribution of each attribute to the overall
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prediction that can be used to demystify complex models.

Based on ideas of game theory, namely, Shapley values, SHAP fairly
allocates the prediction across features, similar to the way rewards are
allocated among participants in a cooperative game.

The SHAP values can be expressed as follows:

Pi(fx) = Z;\{i} (BHEEEE (s v ip - £(9)]) (1)

where ¢i represents the SHAP value for feature i, S denotes a subset
of features excluding i, F is the set of all features, and f (S) is the
model’s output when only the features in S are considered.

e TLocal Accuracy: This principle ensures that the sum of the SHAP
values equals the difference between the model’s prediction for a
given input and the average model output. Formally:

f(x) = g(x) = do + XL, (dix';) (2)
where ¢0 is the average model output over the entire dataset, and ¢i
are the SHAP values for each feature.

e Feature Absence (Missingness): This means that when a feature is not
used in the model (i.e. the wvalues of it are either zero or not
present in the model), its SHAP value should be zero:

Xl=0==> ¢l=0 (3)

e Consistency: According to this principle, when addition of a feature
to the model increases the impact of a feature on the prediction The
SHAP values of the feature should increase. For two models, f and f

r, o if:

@)= f.@\i) = £(z") = filz'\1) (4)

for all subsets z’'€ {0, l}D{ then:

q)i(f,'X)Z ¢i(f'X) (5)

SHAP offers a mathematically sound and consistent framework for
attributing feature importance, aiding in the interpretability and

trustworthiness of machine learning models.

4.2.2. Gradient-weighted Class Activation Mapping (Grad-CAM)
Grad-CAM [35] is a visual explanation device of a broad set of
convolutional neural network (CNN) models and was initially introduced by
Selvaraju et al. It operates by identifying and highlighting important
regions in an input image that is useful in the model class predictions.
This is achieved through development of a heatmap of the significant regions
by computing the gradients of any target class with respect to the
activations of the final convolutional layer. Grad-CAM is more versatile
than CAM and is applicable with other CNN architectures with no design
modifications being needed. Grad-CAM produces informative visualizations
that are computed by calculating gradients and transforming the feature
maps of the final convolutional layer by differentiating between classes.
e Calculating the gradient: Grad-CAM involves computing the gradient
of the loss with respect to the activations in the final

convolutional layer:

a
ﬁ (6)

This step indicates the extent of the contribution made by each
region to the loss of the activation maps which were involved in the
decision making process of each region.

e Gradient Global Average Pooling (GAP): The significance weights ak
for each channel in the activation maps of the gradients is then
calculated using GAP operation.

ko 1N oL
a _ZZSQF\{i}ZaAk (7)

Here it will be convenient to assume that the total number of
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components in the activation map Ak is equal to the product of H x
W, where Z, and the weight of each channel’s contribution to the
model output is given by ak.

Complete Grad-CAM Formula: Such weights are subsequently multiplied
with the activation maps, and the ReLU function is added to it to
create the Grad-Cam heatmap:

Grad — CAM, = RelLU ¥, (a* A%) (8)

In this formula, the roles of the weighted activation maps are
demonstrated, to bring out the areas of the input image that are
predicted. The ReLU function assists in the promotion of
interpretability in the manner by which the real behavior of the
model is executed while ensuring only characteristics that support
the target class are illustrated.

4.2.3. Local Interpretable Model-Agnostic Explanations (LIME)
Ribeiro et al. [36] proposed LIME, an approach for generating locally

faithful models and one which provides easily interpretable explanations
for a decision made by a given model. The approach identifies a surface
that closely models a complex decision boundary of a given machine learning
model for the specific data instance that needs to be explained. To explain
the behavior of the original complex model nearby that instance, LIME uses
a simpler model with improved interpretability.

Comprehensible Data Display: This is among the key attributes of
LIME since it offers the framework a direction on which features are
interpretable, and which are complex. LIME reduces the representation
to a human-understandable level. For example, in text classification,
the model itself may employ more complex features 1like word
embeddings, whereas the explanation may utilize a binary vector that
indicates the presence or absence of particular words. Similarly,
even if the model employs raw pixel values or other image attributes
for image classification, LIME may represent pictures based on the
existence of super-pixels. This might be converted into an

r

interpretable binary form x' € {0, 1}9 in the context of an
instance x € R9Y, where each element of x' represents a reduced
feature:
x € R4 (9)

14
x' € {0,134 (10)
The binary vector x' is then used for generating human-understandable
explanations.
Trade-off between Integrity and Interpretability: Interpretable and
true to the original model explanations are the goals of LIME. The
explanation model, represented by the notation g € G is selected
from a collection G of interpretable models, including rule-based
systems, decision trees, and linear models. The interpretable feature
space is represented by {0, 1}9, which is the domain of g. The symbol
Q(g) represents the explanatory model’s complexity, which may be
interpreted as the number of non-zero weights in a linear model or
the depth of a decision tree. The degree to which the explanatory
model g approximates the original model f close to the instance x is
measured by the fidelity function L(f, g, Ix), where 1m,(z) specifies
the proximity of the instance z to x. LIME balances interpretability
and fidelity by optimizing the following equation:
e(x) = argmingg (L (F,G,my) + Q(g)) (11)
Local Approximation Sampling: By sampling data points in the vicinity
of x', LIME approximates the local fidelity function L(f, g, [ox).
This is carried performed without making any assumptions regarding
the original model’s structure f. Each of these modified samples is
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labelled by the original model, forming a dataset Z. Using this
dataset to solve equation (10) balances simplicity and fidelity while
offering a locally correct and interpretable explanation £ (x).

e Diffuse Linear Interpretations: LIME looks for a sparse linear model
for interpretability where G contains linear models and the fidelity
function L is selected to be a locally weighted square loss. To give
points near x greater weight, a kernel function nx(z) is used. For
this task, the loss function is defined as follows:

2
L(f.9.1x) = X3 y1e ;™ (D(f(2) — 9(2) (12)

LIME uses regularisation techniques like Lasso to reduce the amount
of characteristics in the explanation while maintaining

interpretability. Next, restrictions are used to regulate the model’s

complexity, usually with the use of an indicator function:

Ag) = o - 1[|lwgl], > K] (13)

In this case, K stands for the maximum number of non-zero weights

that may be included in the linear model while maintaining a concise

and understandable explanation.

By using simplified approximations, LIME efficiently generates
straightforward, locally accurate explanations that assist wusers in
comprehending and interpreting the workings of complicated models,
including deep learning models.

4.3. Datasets for Breast Cancer Diagnosis

As shown in Figure 1, the dataset used to diagnose breast cancer
consists of both clinical image data and non-image data [37]. Radiological
and pathological pictures make up clinical image data. MRI, CT, thermal
imaging, mammography, and ultrasound are examples of radiology pictures,
whereas histopathology and pCLE are examples of pathology images. Clinical
and non-clinical data are further classifications for non-image data.
Laboratory findings, radiography and pathology reports, and narrative
summaries of the patient’s condition are all considered clinical data. Age,
patient history, demographics, and genetic data are examples of non-
clinical data [38].

Furthermore, there are two types of non-image data: organized and
unstructured. Pathology reports and patient profiles are classified as
structured data, whereas radiology reports and narrative patient
descriptions are classified as unstructured data [39]. This work focusses
mostly on histopathology-based datasets, especially 1in a multi-modal
setting, even though there are many image and non-image datasets available
for breast cancer detection. The table shows that most datasets have small
sample sizes, and there are far fewer multi-modal datasets than unimodal
datasets.

Many datasets, each offering distinct insights, improve the study of
breast cancer histology. BRACS [40] and BreCaHAD [41] are examples of
unimodal datasets that concentrate on a single kind of data. For instance,
three qualified pathologists have annotated The 162 histopathology photos
in BreCaHAD, which focus on malignant cases, also include annotations for
tubules, non-tubules, tumor nuclei, apoptosis, and mitosis.

Multi-modal datasets, on the other hand, integrate many data sources
to provide a more thorough picture of the pathophysiology of breast cancer
[42] combines pathology pictures, CNVs, and gene expression information
from 1,098 patients with breast cancer. Deeper understanding of the
molecular and histological features of breast cancer is possible because
to this multifaceted dataset. The IMPRESS dataset, which includes 126
patients’ whole-slide images (WSIs) stained with Hematoxylin and Eosin
(HE) along with biomarker annotations and extra clinical data, is another
example. 96 WSIs and clinical information, such as the status of the human
epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and
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estrogen receptor (ER), are provided by the Post-NAT BRCA38 dataset [43].
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Figure 1. Types of breast cancer diagnosis data

126 HE-stained WSIs from 64 patients with triple-negative breast
cancer and 62 patients with HER2-positive breast cancer, all of whom
underwent neoadjuvant chemotherapy prior to surgery, are included in the
IMPRESS dataset [44]. Additionally, it contains WSIs stained with immuno-
histochemistry (IHC) and the associated scores, which are scanned at 20x
magnification. The GTEx Project [45] provides histology images of normal
human tissues, including breast (mammary) tissue, along with comprehensive
gene expression data and sample metadata. The GTEx histology slides are
available at high resolution (e.g., 20x magnification), and cover samples
from both female and male donors.

134 patients with invasive breast cancer had 642 WSIs scanned at 20x
magnification with resolutions of 0.25 and 0.5 um/pixel in the CPTAC-BRCA
dataset [46] compiled by the Clinical Proteomic Tumor Analysis Consortium.
Proteomic, genetic, and clinical data are added to this dataset. 1In
contrast, van Winkel et al. [47] investigated the wuse of AI as a
simultaneous decision support system in DBT. In a multi-reader-multi-case
retrospective study, it was shown that AI support significantly improved
diagnostic performance, increased the AUC value, and also reduced the
reading time of radiologists.

For a thorough assessment of multi-modal techniques, we chose
datasets that provide thorough information on multiple modalities including
imaging, clinical records, and genetic data. High quality datasets must
have accurate genetic data, lots of comprehensive and standardized clinical
information, as well as high resolution pictures. Secondly, it is also
necessary to ensure the selection criteria of datasets by which they
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represent a variety of demographics. Criteria that should run by exclusion

should weed out datasets that do not satisfy these requirements,
datasets with poor or missing data.
ensures that the study is representative of real clinical settings,
generalizable to other patient groups

[487.

e.g.,

This meticulous screening process

and

For example, the TCGA-BRCA [42]

was selected because of its comprehensive genomic characterization and

inclusion of multiple breast cancer subtypes.
histopathology image datasets,

In contrast, well-structured
such as those presented by Spanhol et al.

[54] provide complete and standardized imaging data supporting robust model
development. By clearly defining the inclusion and exclusion criteria, this
study aims to ensure the robustness and applicability of the evaluated

multimodal methods based on complete,

diverse clinical scenarios.

high-quality datasets representing

Table 1. Summary of datasets and methods employed in breast cancer
studies
Dataset Dataset Type [Method Task Modality
Proprietary Proprietary |Unet3+ [49] Segmentation Ultrasound
CBIS-DDSM [50], [Mixed (public|Yolo-based model Detection Mammogram (DM)
Inbreast [51], [+ [52]
Proprietary proprietary)
TCGA [42] Public moBRCA-net [53] Sub-type classification Multi-omics
BreakHis [54] Public Hybrid CNN-LSTM Histopathological Histopathology
[55] classification
DataBioX Public Ensemble CNN [28] Grade classification Histopathology
histopathology
dataset [56]
BUSI [57], Public Hybrid CNN [59] Detection Mammogram,
Mini- DDSM [58] ultrasound
images
Proprietary Proprietary |KAMnet [60] Detection Ultrasound
Proprietary Proprietary [Classifier-combined |[Grade classification MRT
method [27]
WPBC Public Recurrence Recurrence and Clinical data
prediction [61] metastasis
CBIS-DDSM [50], [Public Semantic Segmentation Mammogram
IMIAS [62] segmentation [63]
BreakHis [54], Multiple EMDCOC [65] Detection Histopathology,
IR Thermal public IR thermal
Images [64] images
IMIAS [62] Public Optimized LSTM with [Segmentation Mammogram
U-net segmentation
[66]
TCGA [42] Public Multi-modal fusion |[Prediction WSI, gene
[67] expression
Ultrasound Image|Public DeepBreast Detection Ultrasound
dataset [68], CancerNet [69]
BUSI [57]
TCGA [42] Public DSCCN [29] Sub-type classification Multi-omics
Proprietary Proprietary |Prediction model Recurrence and Clinical data
for distant metastasis
metastasis [70]
BreakHis [54] Public Histogram K-Means Segmentation Histopathology
segmentation [71]
IAbbreviations = LSTM: Long Short- [Detection: lesion / DM: Digital
and Terminology Term Memory cancer identification; [Mammography;
Segmentation: lesion IR: Infrared
boundary delineation;
Subtype / Grade
classification:
molecular / grade
categorization
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4.4. Related Works

AT systems can be employed in different manners for DM- or DBT-
based breast cancer screening programs according to different implementing
way according to the particular requirement and preference of each
screening program. In Table 2, this study presents the main approaches
suggested for using AI in breast cancer screening in the scientific
literature. Concurrent AI decision help during mammography interpretation
is a popular strategy. For instance, Pacile et al. [72] showed that
while radiologists’ reading time per case rose by 9-14%, AI-enhanced
readings improved their AUC from 76.9% to 79.7%. Similarly, Conant et
al. [73] found that AI help decreased radiologists’ reading time by 53%
while increasing their AUC from 0.80 to 0.895. AUC improvements with AT
help were also seen in a number of other studies, including those by
researchers in [74] and van Winkel et al. [47]. However, the effect on
reading time varied, with some reporting quicker reading times and others
finding no discernible change.

Using AI as a stand-alone secondary reading in screening procedures
is another tactic. In an upcoming paired research, for example, Dembrower
et al. [75] showed that the application of AI reduced the number of
screening readings by 50% while maintaining or slightly improving the
cancer detection rate (CDR) by 4% and decreasing the recall rate by 4%.
Other retrospective investigations, including those by [76], [77], and
[78], provided similar findings, demonstrating lower recall rates and
less workload, but with differing effects on CDR.

Additionally, AI may be used as a triage tool, with high-risk
examinations being double-read and low-risk exams being single-read. For
instance, Lang et al. [79] found that using AI in this way reduced the
number of reads by 44% while maintaining a non-inferior cancer detection
rate and comparable recall rates. A similar strategy was also shown by
the authors in [76], who showed the same CDR with a 35% reduction in
reading burden and a 9% lower recall rate.

A more automated triage approach has also been suggested, in which
only high-risk tests are double-read and low-risk exams are automatically
classified as normal. According to writers in [80], this method reduced
reading burden by 19% whilewithout compromising sensitivity and recall.
Similar methods were used by writers in et al. [81] for both DM and DBT,
showing workload reductions of up to 72% and 17% lower recall rates.
Furthermore, according to Sauthors in [82], AI triage reduced effort by
40% and recall rate by 25% while maintaining non-inferior sensitivity.

As anticipated, the way AI is applied will determine its possible
influence on breast cancer screening. While some solutions may boost
sensitivity at the price of increased false positive rates, others may
drastically reduce the effort without compromising sensitivity. Although
Lang et al. [79 and 83] appear to be moving in the right direction, it
is still unclear from empirical data if AI in screening might lead to
concurrent gains in workload, sensitivity, and specificity.

It’s crucial to remember that the many applications of AI in breast
cancer screening can be coupled and are not exclusive of one another.
Despite being one of the most studied subfields of radiological AT,
there is still little proof of breast imaging AI’s efficacy. A large
proportion of studies are retrospective in nature, examining just a small
number of commercially accessible AI systems using data that 1is
frequently not typical of screening programs throughout the world.
Dataset enrichment, a dearth of research examining how radiologists’
behavior may alter when AI is used, and the limited clinical significance
of some findings, such as the biological behavior of screen-detected
tumors, represent additional challenges. Also, the range of possible
applications for any AI system is limited by the unique characteristics
and intended purpose of any such system. A classic example is that even

139



PSP
WS

Maral, A.M., Erdem, O.A., and S&git, E.,
Engineering Sciences, 2025, 20(4):129-147.

if this is a part of a double reading scenario, an AI system which is
cleared by the regulators for use as concurrent decision assisting
equipment for mammography cannot be used as a stand-alone reader in the

screening.

Table 2. Summary of AI strategies for breast cancer screening and their
effectiveness
Publication AT implementation [Evaluation Dataset/ Effect on Effect on
strategy setting Modality Screening/ Work-load
Performance
Pacile et al. |[Concurrent AI Reader-based Screening IJAUC increased |Reading time
[72] decision support |evaluation mammography |from 0.769 to |increased by 9-
(DM) 0.797 14%
Conant et al. [Concurrent AI Reader-focused |DBT JAUC increased |Reading time
[73] decision support |study from 0.80 to reduced by 53%
(retrospective) 0.895
Rodriguez-Ruiz |Concurrent AI Reader analysis|Screening IJAUC increased [No significant
et al. [74] decision support |experiment mammography |from 0.87 to change in
(retrospective) | (DM) 0.89 reading time
Van Winkel et|Concurrent AT Multi-reader DBT IJAUC increased |Reading time
al. decision support |multi-case from 0.83 to reduced by 12%
[47] study 0.86
(retrospective)
Dembrower et |[AI as a stand- Paired Screening Non-inferior Screening
al. [75] alone reader [orospective mammography |CDR with workload
Rnalysis (DM) loreserved or reduced by ~50%
reduced recall
rate
Larsen et al. [AT as a stand- Retrospective |[Screening Comparable CDR [Screen readings
[76] alone reader loerformance mammography [with reduced reduced by ~50%
analysis (DM) recall rate
Sharma et al. |AI as a stand- Historical datal|Screening Non-inferior Workload
[77] alone reader assessment mammography |cancer reduced by 30-
(DM) detection and [45%
recall rates
Leibig et al. |AT as a stand- Retrospective [Screening Maintained or [Screening
[78] alone reader comparative mammography |improved CDR requirements
review (DM) with reduced reduced by ~50%
recall rate
Lang et al. ATl as a triage Randomized Screening Non-inferior 44% fewer
[79] tool controlled mammography |CDR with screen readings
experiment (DM) comparable
recall rate
Lang et al. AT triage for Retrospective |Screening Maintained 19% fewer
[80] auto-normal data mammography |sensitivity and|readings
labeling analysis (DM) recall rate
Raya-Povedano |AI triage for Historical Digital Maintained 71% fewer DM
et al. [81] auto—-normal review mammography |sensitivity and 72% fewer
labeling (DM) and DBTwith 17% lower |DBT readings
recall rate (P
< .001)
Lauritzen et AT triage for Retrospective |Screening Non-inferior Workload
al. [84] auto-normal out-come mammography [sensitivity reduced by 63%
labeling evaluation (DM) with 19% lower
recall rate
Dembrower et [AI triage for Retrospective |[Screening Maintained 60% fewer
al. [85] auto-normal impact analysismammography |cancer readings
labeling (DM) detection in
simulation-
lbased analysis
Shoshan et al. |ATl triage for Retrospective |DBT Maintained 40% fewer
[82] auto-normal efficiency sensitivity DBT readings
labeling study with 25% lower
recall rate (P
= .002)
IAbbreviations Recall rate: Sensitivity:
and proportion of |true positive
performance screened cases |rate;
metrics recalled for Specificity:
additional true negative
assessment rate
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5. CONCLUSION AND RECOMMENDATIONS

The analyzed 1literature also demonstrates that artificial
intelligence has significant potential to improve the process of
screening and diagnostic tests of breast cancer, but also shows
significant limitations that prevent its use in the clinic on a regular
basis. AI systems Dbased on imaging and applied to mammography,
ultrasound, MRI, and histopathology have Dbeen shown to be highly
sensitive and display higher cancer detection rates especially when
utilized to support concurrent decision making or triage, although these
advantages are often accompanied by increased false-positive/recall
rates, which has concerns about overdiagnosis and unnecessary follow-
up. Most of the reported performance improvements are based on
retrospective or enriched datasets that do not necessarily reflect the
actual screening population in the real-world situation, which adds to
dataset bias and further generalizability. Multi-modal AI methods which
combine imaging with clinical or molecular data are better at subtype
classification and have Dbetter prognostic performance, but their
clinical implementation is 1limited Dby data scarcity, lack of
interoperability, and multi-source data integration complexity.
Explainable AI algorithms such as SHAP, Grad-CAM and LIME are significant
in enhancing transparency and clinician confidence, and their post-hoc
disposition and sensitivity to model and data fluctuations can lead to
unreliable and possibly misguided explanations. Moreover, the lack of
external and prospective validation, regulatory and implementation
obstacles and imbalances in training datasets are still limiting to real
world deployment. These issues can be resolved by standardized evaluation
systems, varied and quality data, effective explainability policies, and
future multi-centre clinical trials that will wvalidate that AI systems
offer reliable, fair, and clinically significant advantages to breast
cancer diagnosis.

The use of artificial intelligence in breast cancer screening and
diagnosis has made considerable advances and has shown the capacity to
enhance the quality of the diagnostic process, decrease the inter-
observer variability, and simplify the clinical processes of radiology
and pathology. AI systems can be conveniently used as co-decision-support
systems, independent readers, or triage systems, which means that they
can be flexibly implemented, depending on the needs of screening programs
and their available resources as outlined in this review. All these
applications highlight the possibility of AI as the efficiency booster
and the ability to provide a more personalized management of patients.

Nevertheless, clinical translation cannot be done on a large scale
unless a number of crucial issues are resolved. Most of the available
evidence is based on retrospective studies and single-centre studies
which may not reflect the heterogeneity of real-life screening
populations, imaging protocols and clinical practice. Subsequent studies
ought then to focus on the more important studies that are of large
scale, prospective clinical trials, and federated and multi-center
datasets so that their impact becomes more robust and representative of
other demographic groups. Standardized evaluation metrics and reporting
systems are needed to facilitate meaningful comparison among AI systems
and also to facilitate regulatory approval. Along with the explanation
of AT and clinician-in-the-loop, they should be integrated to enhance
transparency, trust, and clinical accountability. These methodological,
technical, and regulatory gaps are the key to allowing AI to play a
safe, fair, and sustainable role of an assistant, but not a substitute,
of radiologists and pathologists in the routine management of breast
cancer.
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