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ARTIFICIAL INTELLIGENCE IN BREAST CANCER DIAGNOSIS: CURRENT 

APPLICATIONS, CHALLENGES, AND THE ROLE OF EXPLAINABLE AI 

 

ABSTRACT 

Breast cancer is the commonly diagnosed cancer in women all over 

the world, and its prevalence is constantly increasing despite 

significant advancements in the area of early diagnosis and individual 

treatment approaches. Nevertheless, present-day workflows in diagnostic 

interventions are struggling with problems such as overdiagnosis in 

populations with low risks, growing workloads among radiologists and 

pathologists, and inconsistencies in the interpretation of the findings 

of the imaging and pathological studies. In that regard, artificial 

intelligence (AI) has proven to be an effective solution to these 

drawbacks by enhancing image analysis, automating the working processes 

that consume a lot of labor, and facilitating clinical decision-making. 

This paper provides a narrative review of the recent AI implementation 

in breast cancer screening and diagnosis, including malignancy detection 

and classification, tumor segmentation, prediction of molecular subtype, 

and recurrence or metastatic risk. The data sources are analyzed both 

in imaging and non-imaging, which are mammography, ultrasound, magnetic 

resonance imaging (MRI), histopathology, clinical variables, and multi-

modal data integration. Also, the reviewed articles identify explainable 

artificial intelligence (XAI) methods, including SHAP, Grad-CAM, and 

LIME, as central to improving the transparency, interpretability, and 

confidence clinicians have in AI-assisted systems. On the whole, the 

current evidence indicates that AI-based tools have the potential to 

increase the level of diagnostic accuracy, minimize inter-observer 

variability, and provide a personalized risk evaluation and treatment 

planning. However, there are still multiple obstacles to widespread 

clinical implementation such as heterogeneity of datasets, a lack of 

external and prospective validation, interpretability issues, and 

constraints based on real-world application. Future studies must, 

therefore, focus on the creation of more and better-quality data, 

standard assessment guidelines, solid explainability models, and future 

clinical trials to allow the safe, productive, and fair integration of 

AI into regular breast cancer care. 

Keywords: Screening, Explainable AI, Malignancy Classification, 

          Recurrence Prediction, Image Segmentation 
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1. INTRODUCTION 

Breast cancer has been on a gradual rise and it is currently the most 

frequently diagnosed malignancy in women all over the world, outdoing lung 

cancer in incidence [1 and 2]. Although this burden is increasing, screening 

and the creation of individual treatment options have led to a dramatic drop 

in mortality related to breast cancer and better patient outcomes [1 and 3]. 

Nevertheless, there are still significant issues in the diagnostic pathway 

such as overdiagnosis in low-risk groups, increased strain on the radiology 

and pathology services, and inconsistency of image and specimen 

interpretation [4, 5, 6 and 7]. Moreover, lack of access to diagnostic 

tests, as well as high cost of advanced tests, still impede timely and fair 

care in most locales [8, 9, 10, 11 and 12]. The diagnostic process of breast 

cancer is multi-step, usually involving screening, assessment by imaging 

techniques, tissue biopsy, pathology, staging, molecular and biomarker 

profiling, and treatment planning, and in some cases, neoadjuvant therapy, 

surgery, and systemic adjuvant treatments [17 and 18]. However, the existing 

screening procedures fail to best consider diversity in personal risk, and 

they might expose the lower-risk groups to additional recall and therapy; in 

the United Kingdom, an autonomous analysis of randomized trials estimated a 

19% risk of overdiagnosis with screening [4]. Despite the use of risk 

stratification tools to inform intensified surveillance, including annual 

MRI in women with a lifetime breast cancer risk of ≥20% [19], most models 

are based on non-routinely measured variables, have low predictive power 

(often AUC<0.7), and most tend to select those cancers, which have a better 

prognosis, thus restricting their population-level influence [20, 21 and 

22]. At the same time, shortages in the workforce, as well as growing imaging 

volumes, further burden clinical services: it is estimated that the United 

Kingdom will be short of radiologists by 40% in 2027 [5], and the workload 

of a pathologist per practitioner in the United States has gone up by 41.73 

in the last ten years [6].  

These stresses are augmented by the time expenditure of sophisticated 

imaging including digital breast tomosynthesis (DBT)and MRI [23], the 

workload of the pathological procedures (e.g., the extra arrangement of 

slides) [7], and the consistency of agreement (between 75 and 88 percent) 

even in focused diagnostic settings [8 and 11]. Diagnostic proficiency in 

radiology is strongly influenced by clinicians’ experience and training, 

which are known contributors to interpretive accuracy and error 

susceptibility [24]. However, substantial inter- and intra-reader 

variability persists in mammography interpretation, reflecting differences 

in training, experience, and interpretive approaches among radiologists [25]. 

Additionally, expensive and infrastructure-based tests, such as contrast-

enhanced mammography, MRI, and gene tests such as Oncotype Dx are not 

accessible to all institutions and patients and may need referral or specimen 

transfer, and some tissue-destroying tests can limit follow-up biomarker or 

genetic measures [12]. Artificial intelligence (AI) has become one of the 

most promising methods to assist breast cancer diagnosis, enhance the 

interpretation of the images, automate time-consuming processes, and enabling 

predictive analytics in the field of radiology and pathology [13, 14, 15 

and 16]. In line with this, this review summarizes the existing applications 

of AI in all major diagnostic tasks and data types to breast cancer care and 

describes the evidence base that supports their potential clinical utility.  

 

2 .  RESEARCH SIGNIFICANCE 

This review focuses on the role of artificial intelligence in 

addressing the major limitations of current breast cancer diagnosis and 

screening workflows. AI has the potential to reduce overdiagnosis, improve 

the accuracy and consistency of image interpretation, alleviate clinician 

workload, and support personalized treatment planning. A particular 

emphasis is placed on radiology and pathology, where AI can assist in 
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detecting early-stage cancers, characterizing lesions, and predicting 

outcomes. By integrating image-based and non-image-based data, AI systems 

can support risk stratification, subtype classification, and recurrence 

prediction, helping clinicians make more informed decisions and optimize 

patient management. This review further contributes by highlighting the 

importance of explainable AI (XAI) approaches, which are essential for 

building trust, transparency, and accountability in AI-assisted medical 

decision-making. In high-stakes domains such as oncology, interpretability 

is a crucial factor for clinical adoption. 

Highlights: 

 It provides a comprehensive and up-to-date synthesis of artificial 

intelligence applications in breast cancer diagnosis, systematically 

outlining how AI addresses major clinical challenges such as 

overdiagnosis, interpretive variability, and increasing diagnostic 

workload. 

 It offers a focused and structured evaluation of XAI methods—

including SHAP, Grad-CAM, and LIME—highlighting their role in 

enhancing transparency, reliability, and clinical trust, which are 

essential for safe integration of AI systems in oncology. 

 It critically analyzes both imaging-based and non-imaging multimodal 

datasets, identifying current capabilities, limitations, and future 

research directions for AI-driven risk stratification, malignancy 

classification, early detection, and personalized treatment 

planning. 

 

3. ANALYTICAL STUDY (LITERATURE REVIEW METHOD) 

This work is designed as a comprehensive analytical review of the 

literature rather than an experimental bench or clinical trial study. This 

review is in narrative format with a synthesized and reproducible 

literature search strategy. Six large electronic databases, namely PubMed, 

IEEE Xplore, Scopus, Web of Science, ScienceDirect, and Google Scholar, 

were searched using combinations of key words, i.e. breast cancer, 

artificial intelligence, machine learning, deep learning, screening, 

segmentation, classification and recurrence prediction. This search was 

employed, using common variations of terms such as explainable, 

transparency, black box, understandable, and comprehensible. Peer-reviewed 

journal articles and conference papers utilizing AI- or ML-based techniques 

to diagnose or prognose breast cancer based on imaging, clinical, genetic, 

or multi-modal data were included, and the literature was reviewed 

primarily in the 2012-2024 period to give the methodological and historical 

background. Articles written in non-English, editorials, and studies that 

contained an insufficient amount of methodological description and articles 

that did not have a clear focus on the diagnostic or prognostic tasks in 

breast cancer were excluded. After the screening of the titles and the 

abstracts, full-text assessment was performed in order to verify relevance 

and quality, and to identify more studies through a snowballing strategy 

that relied on the list of references of the included articles. 

 

4. FINDINGS AND DISCUSSIONS 

4.1. Breast Cancer Diagnosis: An Overview 

The modern methods of breast cancer diagnosis are more and more 

incorporating both the imaging and non-imaging data. These datasets can 

undergo machine learning (ML) algorithms to identify suspicious areas or 

abnormalities that can indicate the presence of tumors. These methods 

formulate clinically significant data at several points in the diagnostic 

process and have been found beneficial in enhancing the early detection of 

breast cancer [26]. 
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One of the key diagnostic activities is malignancy classification 

that will define the presence of benign or malignant abnormalities and will 

directly affect further clinical management [27]. ML models process image-

derived feature to support this process; these include features like shape, 

texture and intensive patterns. Trained on big and varied data these models 

are able to determine the probability of malignancy, thus helping 

clinicians make evidence-based decisions [28]. Moreover, breast cancer is 

biologically heterogeneous and may be subclassified into molecular subtypes 

according to given biomarkers, all linked to a different prognostic and 

therapeutic consequence. Viable subtype classification like triple-

negative, HER2-positive and hormone receptor-positive breast cancers are, 

thus, an essential aspect of current diagnostic and treatment planning 

interventions [29]. Clinicians can develop more disciplined and selective 

treatment plans by classifying instances into different subgroups to make 

them available to the clinicians in a position to incorporate them into 

their treatment plans. In order to better predict the subtype and have a 

more optimal treatment plan, machine learning algorithms analyze genetic 

profiles, patterns of gene expression, and clinical history. 

This process of dividing the pictorial image or area into segments 

or places of interests is called segmentation [26]. The imaging data 

segmentation is relevant in the diagnosis of breast cancer to identify 

whether there exists any suspicious lesion or a definition of tumor 

boundaries [30]. It is an important stage to define the extent of the tumor 

and its configuration and the basis of other work like the volume of tumor 

or the data obtained. Their performance is highly improved, which 

significantly helps in detecting breast cancer early because of the 

effectiveness of machine learning, particularly deep learning in cutting 

the breast lesion of the medical image [31]. 

In addition to this, another major aspect of breast cancer therapy 

and subsequent follow-up is a capacity to determine metastases formation 

and cancer recurrence estimation [32]. This is a type of work that entails 

an estimation of the possibilities of cancer developing again or further 

spreading in a distant part of the body. Since clinical markers are useful 

in measuring the risk of either relapse or metastasis, machine learning 

models, which by definition, demand the use of statistics in their 

algorithms, can handle multiple forms of data inputs in the form of imaging, 

genetic data, clinical summation, and electronic health records. Therefore, 

these predictions can be implemented successfully to tailor the further 

treatment of patients in an effort to avoid adverse effects and improve 

patient outcomes. 

These activities ought to be combined and modeled together to come 

up with a better and more dynamic system of breast cancer diagnosis. 

Specifically, to enhance the accuracy of subtype classification, it is 

necessary to incorporate complementary processes like tumor segmentation 

and histological grading to give important structural and morphological 

data that are critical in accurate cancer characterization [33]. 

 

4.2. Explainable Artificial Intelligence (XAI) 

The concept of interpretability in machine learning (ML) is the 

capability to comprehend the way a model acts; how it makes predictions. 

More importantly perhaps, this type of model did not particularly claim to 

provide specification as to why it did, but provided an organic view as to 

how they actually operated. Therefore, it could be assumed that not every 

interpretable model is completely explainable despite the interpretability 

being one of the main factors that maximize explainability. By 

interpretability in its turn, we also imply making forecasts regarding 

other potential situations and evaluating the modifications of some inputs. 

Considering both the obvious and the unobvious aspects, the purpose is not 

only to learn more deeply about the ML model but also to provide a more 
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detailed description of its activity. 

Nonetheless, a number of AI models are not easily interpretable, and 

thus, the entire picture cannot be viewed behind the result. Based on this 

lack of transparency, it is easy to argue about their decision-making 

processes as a result of such reasons. Whereas ask and answer why is the 

most one can do using a model to determine how a model arrived at a decision 

based on the inputs, explainability goes one step higher in showing how a 

model reacts to changes in the inputs and how the output changes as a 

result of changes in inputs. This distinction is critical particularly in 

the medical institution where the decisions made are accompanied by the 

consequences of the lives of people who are the recipients of the given 

services. The case of a doctor being unable to prescribe their patients 

medication without knowing how the drugs work is a good example, that the 

doctor should use algorithms and not know how the recommendations are 

generated. Practitioners lose the openness to trust or use the AI technology 

especially when the practitioner is not able to ascertain the results 

produced by the technology. To be trustworthy and just AI approaches must 

be clarified and comprehended particularly in life and death fields like 

medicine, finance and law that have far reaching impacts. 

There are two types of explainable AI that are post and intrinsic. 

The former is what is referred to as transparent models: they are inherently 

comprehensible and explainable. Conversely, post-hoc explainability 

techniques are of two types: model-specific approaches and model-agnostic 

approaches. Post-hoc or surrogate models are used to replicate the decision 

making of models the working of which would otherwise be incomprehensible. 

They are unique like the structure of a model and comprise saliency maps 

and Grad-CAM. Nonetheless, SHAP and LIME and other such model-agnostic 

explanations could be helpful and can be used to shed light on the 

prediction mechanisms of many models. 

The methods of XAI may be divided into two broad groups, including 

global and local explanations. Global explainability attempts to describe 

the general behavior of the model as such that it exposes the general 

decision-making trends and feature dependencies of the model throughout 

the dataset. Conversely, local explainability is concerned with explaining 

why particular predictions have occurred, providing case-specific 

information on how particular inputs affect a single model output. 

The XAI models which have been most actively used alongside ML and 

deep learning (DL) models in breast cancer studies are discussed in the 

following sections. The explanation of XAI models is then given, as well 

as the summary of the relevant studies done in the sphere of breast cancer. 

 

4.2.1. SHapley Additive exPlanations (SHAP) 

The concept of interpretability in ML is the capability to comprehend 

the way a model acts; how it makes predictions. More importantly perhaps, 

this type of model did not particularly claim to provide specification as 

to why it did, but provided an organic view as to how they actually 

operated. Therefore, it could be assumed that not every interpretable model 

is completely explainable despite the interpretability being one of the 

main factors that maximize explainability. By interpretability in its turn, 

we also imply making forecasts regarding other potential situations and 

evaluating the modifications of some inputs. Considering both the obvious 

and the unobvious aspects, the purpose is not only to learn more deeply 

about the ML model but also to provide a more detailed description of its 

activity. 

SHAP [34] is an approach that was proposed by Lundberg and offers a 

powerful and interpretable framework used to understand the predictions of 

ML models assigning importance to each single feature in relation to a 

given output. Local and global interpretability: It allows the 

quantification of the contribution of each attribute to the overall 
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prediction that can be used to demystify complex models. 

Based on ideas of game theory, namely, Shapley values, SHAP fairly 

allocates the prediction across features, similar to the way rewards are 

allocated among participants in a cooperative game. 

The SHAP values can be expressed as follows: 

ϕi(f, x) = ∑ (
|𝐒|!(|F|−|𝐒|−𝟏)!

|F|!
 [𝐟(𝐒 ∪ {𝐢}) − 𝐟(𝐒)])

∞

S⊆F∖{i}
       (1) 

where ϕi represents the SHAP value for feature i, S denotes a subset 

of features excluding i, F is the set of all features, and f (S) is the 

model’s output when only the features in S are considered. 

 Local Accuracy: This principle ensures that the sum of the SHAP 

values equals the difference between the model’s prediction for a 

given input and the average model output. Formally: 

f(x) = g(x′) = ϕ0 + ∑ (ϕ𝑖x′𝑖)𝑀
i=1        (2)  

where ϕ0 is the average model output over the entire dataset, and ϕi 

are the SHAP values for each feature. 

 Feature Absence (Missingness): This means that when a feature is not 

used in the model (i.e. the values of it are either zero or not 

present in the model), its SHAP value should be zero: 

x𝑖 = 0 ==>  ϕ𝑖 = 0         (3) 

 Consistency: According to this principle, when addition of a feature 

to the model increases the impact of a feature on the prediction The 

SHAP values of the feature should increase. For two models, f and f 

′, if: 

𝑓′
𝑥

(𝑧′) − 𝑓′
𝑥

(𝑧′ \ 𝑖 ) ≥  𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′ \ 𝑖 )        (4) 

for all subsets z’∈ {0, 1}M, then: 

ϕ𝑖(𝑓′, x) ≥  ϕ𝑖(𝑓, x)          (5) 

SHAP offers a mathematically sound and consistent framework for 

attributing feature importance, aiding in the interpretability and 

trustworthiness of machine learning models. 

 

4.2.2. Gradient-weighted Class Activation Mapping (Grad-CAM) 

Grad-CAM [35] is a visual explanation device of a broad set of 

convolutional neural network (CNN) models and was initially introduced by 

Selvaraju et al. It operates by identifying and highlighting important 

regions in an input image that is useful in the model class predictions. 

This is achieved through development of a heatmap of the significant regions 

by computing the gradients of any target class with respect to the 

activations of the final convolutional layer. Grad-CAM is more versatile 

than CAM and is applicable with other CNN architectures with no design 

modifications being needed. Grad-CAM produces informative visualizations 

that are computed by calculating gradients and transforming the feature 

maps of the final convolutional layer by differentiating between classes. 

 Calculating the gradient: Grad-CAM involves computing the gradient 

of the loss with respect to the activations in the final 

convolutional layer: 
𝜕𝐿

𝜕𝐴𝑘             (6) 

This step indicates the extent of the contribution made by each 

region to the loss of the activation maps which were involved in the 

decision making process of each region. 

 Gradient Global Average Pooling (GAP): The significance weights αk 

for each channel in the activation maps of the gradients is then 

calculated using GAP operation. 

𝑎𝑘 =
1

𝑧
∑ ∑

𝜕𝐿

𝜕𝐴𝑘 
∞

S⊆F∖{i}
           (7) 

Here it will be convenient to assume that the total number of 
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components in the activation map Ak is equal to the product of H × 

W, where Z, and the weight of each channel’s contribution to the 

model output is given by αk. 

 Complete Grad-CAM Formula: Such weights are subsequently multiplied 

with the activation maps, and the ReLU function is added to it to 

create the Grad-Cam heatmap: 

 Grad − CAM𝑐 = 𝑅𝑒𝐿𝑈 ∑ (𝑎𝑘  𝐴𝑘)𝑘           (8) 

In this formula, the roles of the weighted activation maps are 

demonstrated, to bring out the areas of the input image that are 

predicted. The ReLU function assists in the promotion of 

interpretability in the manner by which the real behavior of the 

model is executed while ensuring only characteristics that support 

the target class are illustrated. 

 

4.2.3. Local Interpretable Model-Agnostic Explanations (LIME) 

Ribeiro et al. [36] proposed LIME, an approach for generating locally 

faithful models and one which provides easily interpretable explanations 

for a decision made by a given model. The approach identifies a surface 

that closely models a complex decision boundary of a given machine learning 

model for the specific data instance that needs to be explained. To explain 

the behavior of the original complex model nearby that instance, LIME uses 

a simpler model with improved interpretability. 

 Comprehensible Data Display: This is among the key attributes of 

LIME since it offers the framework a direction on which features are 

interpretable, and which are complex. LIME reduces the representation 

to a human-understandable level. For example, in text classification, 

the model itself may employ more complex features like word 

embeddings, whereas the explanation may utilize a binary vector that 

indicates the presence or absence of particular words. Similarly, 

even if the model employs raw pixel values or other image attributes 

for image classification, LIME may represent pictures based on the 

existence of super-pixels. This might be converted into an 

interpretable binary form x′ ∈ {0, 1}d
′
in the context of an 

instance x ∈ Rd, where each element of x′ represents a reduced 
feature: 

x ∈  R𝑑 
         (9) 

x′ ∈ {0,1}𝑑′              (10) 

The binary vector x′ is then used for generating human-understandable 

explanations. 

 Trade-off between Integrity and Interpretability: Interpretable and 

true to the original model explanations are the goals of LIME. The 

explanation model, represented by the notation g ∈ G is selected 
from a collection G of interpretable models, including rule-based 

systems, decision trees, and linear models. The interpretable feature 

space is represented by {0, 1}d, which is the domain of g. The symbol 

Ω(g) represents the explanatory model’s complexity, which may be 

interpreted as the number of non-zero weights in a linear model or 

the depth of a decision tree. The degree to which the explanatory 

model g approximates the original model f close to the instance x is 

measured by the fidelity function L(f, g, πx), where πx(z) specifies 

the proximity of the instance z to x. LIME balances interpretability 

and fidelity by optimizing the following equation:    

𝜀(𝑥) =  arg 𝑚𝑖𝑛𝑔𝜖𝐺 (𝐿 (𝐹, 𝐺, 𝜋𝑋) +  Ω(𝑔))      (11) 

 Local Approximation Sampling: By sampling data points in the vicinity 

of x′, LIME approximates the local fidelity function L(f, g, πx). 

This is carried performed without making any assumptions regarding 

the original model’s structure f. Each of these modified samples is 
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labelled by the original model, forming a dataset Z. Using this 

dataset to solve equation (10) balances simplicity and fidelity while 

offering a locally correct and interpretable explanation ξ(x). 

 Diffuse Linear Interpretations: LIME looks for a sparse linear model 

for interpretability where G contains linear models and the fidelity 

function L is selected to be a locally weighted square loss. To give 

points near x greater weight, a kernel function πx(z) is used. For 

this task, the loss function is defined as follows: 

𝐿(𝑓, 𝑔, 𝜋𝑋) = ∑ 𝜋𝑥  (𝑧)(𝑓(𝑧) − 𝑔(𝑧′))
2𝑥

𝑧, 𝑧′𝜖 𝑍      (12) 

LIME uses regularisation techniques like Lasso to reduce the amount 

of characteristics in the explanation while maintaining 

interpretability. Next, restrictions are used to regulate the model’s 

complexity, usually with the use of an indicator function: 

Ω(𝑔) =  ∞ ∙  1 [||𝑤𝑔||
0

> 𝐾]           (13) 

In this case, K stands for the maximum number of non-zero weights 

that may be included in the linear model while maintaining a concise 

and understandable explanation. 

By using simplified approximations, LIME efficiently generates 

straightforward, locally accurate explanations that assist users in 

comprehending and interpreting the workings of complicated models, 

including deep learning models. 

 

4.3. Datasets for Breast Cancer Diagnosis 

As shown in Figure 1, the dataset used to diagnose breast cancer 

consists of both clinical image data and non-image data [37]. Radiological 

and pathological pictures make up clinical image data. MRI, CT, thermal 

imaging, mammography, and ultrasound are examples of radiology pictures, 

whereas histopathology and pCLE are examples of pathology images. Clinical 

and non-clinical data are further classifications for non-image data. 

Laboratory findings, radiography and pathology reports, and narrative 

summaries of the patient’s condition are all considered clinical data. Age, 

patient history, demographics, and genetic data are examples of non-

clinical data [38]. 

Furthermore, there are two types of non-image data: organized and 

unstructured. Pathology reports and patient profiles are classified as 

structured data, whereas radiology reports and narrative patient 

descriptions are classified as unstructured data [39]. This work focusses 

mostly on histopathology-based datasets, especially in a multi-modal 

setting, even though there are many image and non-image datasets available 

for breast cancer detection. The table shows that most datasets have small 

sample sizes, and there are far fewer multi-modal datasets than unimodal 

datasets. 

Many datasets, each offering distinct insights, improve the study of 

breast cancer histology. BRACS [40] and BreCaHAD [41] are examples of 

unimodal datasets that concentrate on a single kind of data. For instance, 

three qualified pathologists have annotated The 162 histopathology photos 

in BreCaHAD, which focus on malignant cases, also include annotations for 

tubules, non-tubules, tumor nuclei, apoptosis, and mitosis. 

Multi-modal datasets, on the other hand, integrate many data sources 

to provide a more thorough picture of the pathophysiology of breast cancer 

[42] combines pathology pictures, CNVs, and gene expression information 

from 1,098 patients with breast cancer. Deeper understanding of the 

molecular and histological features of breast cancer is possible because 

to this multifaceted dataset. The IMPRESS dataset, which includes 126 

patients’ whole-slide images (WSIs) stained with Hematoxylin and Eosin 

(HE) along with biomarker annotations and extra clinical data, is another 

example. 96 WSIs and clinical information, such as the status of the human 

epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and 
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estrogen receptor (ER), are provided by the Post-NAT BRCA38 dataset [43]. 

 

 
Figure 1. Types of breast cancer diagnosis data 

 

126 HE-stained WSIs from 64 patients with triple-negative breast 

cancer and 62 patients with HER2-positive breast cancer, all of whom 

underwent neoadjuvant chemotherapy prior to surgery, are included in the 

IMPRESS dataset [44]. Additionally, it contains WSIs stained with immuno- 

histochemistry (IHC) and the associated scores, which are scanned at 20× 

magnification. The GTEx Project [45] provides histology images of normal 

human tissues, including breast (mammary) tissue, along with comprehensive 

gene expression data and sample metadata. The GTEx histology slides are 

available at high resolution (e.g., 20× magnification), and cover samples 

from both female and male donors. 

134 patients with invasive breast cancer had 642 WSIs scanned at 20× 

magnification with resolutions of 0.25 and 0.5 µm/pixel in the CPTAC-BRCA 

dataset [46] compiled by the Clinical Proteomic Tumor Analysis Consortium. 

Proteomic, genetic, and clinical data are added to this dataset. In 

contrast, van Winkel et al. [47] investigated the use of AI as a 

simultaneous decision support system in DBT. In a multi-reader-multi-case 

retrospective study, it was shown that AI support significantly improved 

diagnostic performance, increased the AUC value, and also reduced the 

reading time of radiologists. 

For a thorough assessment of multi-modal techniques, we chose 

datasets that provide thorough information on multiple modalities including 

imaging, clinical records, and genetic data. High quality datasets must 

have accurate genetic data, lots of comprehensive and standardized clinical 

information, as well as high resolution pictures. Secondly, it is also 

necessary to ensure the selection criteria of datasets by which they 
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represent a variety of demographics. Criteria that should run by exclusion 

should weed out datasets that do not satisfy these requirements, e.g., 

datasets with poor or missing data. This meticulous screening process 

ensures that the study is representative of real clinical settings, and 

generalizable to other patient groups [48]. For example, the TCGA-BRCA [42] 

was selected because of its comprehensive genomic characterization and 

inclusion of multiple breast cancer subtypes. In contrast, well-structured 

histopathology image datasets, such as those presented by Spanhol et al. 

[54] provide complete and standardized imaging data supporting robust model 

development. By clearly defining the inclusion and exclusion criteria, this 

study aims to ensure the robustness and applicability of the evaluated 

multimodal methods based on complete, high-quality datasets representing 

diverse clinical scenarios. 

 

Table 1. Summary of datasets and methods employed in breast cancer 

studies 

 

 

 

Dataset Dataset Type Method Task Modality 

Proprietary Proprietary Unet3+ [49] Segmentation Ultrasound 

CBIS-DDSM [50], 

Inbreast [51], 

Proprietary 

Mixed (public 

+ 

proprietary) 

Yolo-based model 

[52] 

Detection Mammogram (DM) 

TCGA [42] Public moBRCA-net [53] Sub-type classification Multi-omics 

BreakHis [54] Public Hybrid CNN-LSTM 

[55] 

Histopathological 

classification 

Histopathology 

DataBioX 

histopathology 

dataset [56] 

Public Ensemble CNN [28] Grade classification Histopathology 

BUSI [57], 

Mini- DDSM [58] 

Public Hybrid CNN [59] Detection Mammogram, 

ultrasound 

images 

Proprietary Proprietary KAMnet [60] Detection Ultrasound 

Proprietary Proprietary Classifier-combined 

method [27] 

Grade classification MRI 

WPBC Public Recurrence 

prediction [61] 

Recurrence and 

metastasis 

Clinical data 

CBIS-DDSM [50], 

MIAS [62] 

Public Semantic 

segmentation [63] 

Segmentation Mammogram 

BreakHis [54], 

IR Thermal 

Images [64] 

Multiple 

public 

EMDCOC [65] Detection Histopathology, 

IR thermal 

images 

MIAS [62] Public Optimized LSTM with 

U-net segmentation 

[66] 

Segmentation Mammogram 

TCGA [42] Public Multi-modal fusion 

[67] 

Prediction WSI, gene 

expression 

Ultrasound Image 

dataset [68], 

BUSI [57] 

Public DeepBreast 

CancerNet [69] 

Detection Ultrasound 

TCGA [42] Public DSCCN [29] Sub-type classification Multi-omics 

Proprietary Proprietary Prediction model 

for distant 

metastasis [70] 

Recurrence and 

metastasis 

Clinical data 

BreakHis [54] Public Histogram K-Means 

segmentation [71] 

Segmentation Histopathology 

Abbreviations 

and Terminology 

— LSTM: Long Short-

Term Memory 

Detection: lesion / 

cancer identification; 

Segmentation: lesion 

boundary delineation; 

Subtype / Grade 

classification: 

molecular / grade 

categorization 

DM: Digital 

Mammography;  

IR: Infrared 
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4.4. Related Works 

AI systems can be employed in different manners for DM- or DBT-

based breast cancer screening programs according to different implementing 

way according to the particular requirement and preference of each 

screening program. In Table 2, this study presents the main approaches 

suggested for using AI in breast cancer screening in the scientific 

literature. Concurrent AI decision help during mammography interpretation 

is a popular strategy. For instance, Pacile et al. [72] showed that 

while radiologists’ reading time per case rose by 9–14%, AI-enhanced 

readings improved their AUC from 76.9% to 79.7%. Similarly, Conant et 

al. [73] found that AI help decreased radiologists’ reading time by 53% 

while increasing their AUC from 0.80 to 0.895. AUC improvements with AI 

help were also seen in a number of other studies, including those by 

researchers in [74] and van Winkel et al. [47]. However, the effect on 

reading time varied, with some reporting quicker reading times and others 

finding no discernible change. 

Using AI as a stand-alone secondary reading in screening procedures 

is another tactic. In an upcoming paired research, for example, Dembrower 

et al. [75] showed that the application of AI reduced the number of 

screening readings by 50% while maintaining or slightly improving the 

cancer detection rate (CDR) by 4% and decreasing the recall rate by 4%. 

Other retrospective investigations, including those by [76], [77], and 

[78], provided similar findings, demonstrating lower recall rates and 

less workload, but with differing effects on CDR. 

Additionally, AI may be used as a triage tool, with high-risk 

examinations being double-read and low-risk exams being single-read. For 

instance, Lång et al. [79] found that using AI in this way reduced the 

number of reads by 44% while maintaining a non-inferior cancer detection 

rate and comparable recall rates. A similar strategy was also shown by 

the authors in [76], who showed the same CDR with a 35% reduction in 

reading burden and a 9% lower recall rate. 

A more automated triage approach has also been suggested, in which 

only high-risk tests are double-read and low-risk exams are automatically 

classified as normal. According to writers in [80], this method reduced 

reading burden by 19% while without compromising sensitivity and recall. 
Similar methods were used by writers in et al. [81] for both DM and DBT, 

showing workload reductions of up to 72% and 17% lower recall rates. 

Furthermore, according to Sauthors in [82], AI triage reduced effort by 

40% and recall rate by 25% while maintaining non-inferior sensitivity. 

As anticipated, the way AI is applied will determine its possible 

influence on breast cancer screening. While some solutions may boost 

sensitivity at the price of increased false positive rates, others may 

drastically reduce the effort without compromising sensitivity. Although 

Lang et al. [79 and 83] appear to be moving in the right direction, it 

is still unclear from empirical data if AI in screening might lead to 

concurrent gains in workload, sensitivity, and specificity. 

It’s crucial to remember that the many applications of AI in breast 

cancer screening can be coupled and are not exclusive of one another. 

Despite being one of the most studied subfields of radiological AI, 

there is still little proof of breast imaging AI’s efficacy. A large 

proportion of studies are retrospective in nature, examining just a small 

number of commercially accessible AI systems using data that is 

frequently not typical of screening programs throughout the world. 

Dataset enrichment, a dearth of research examining how radiologists’ 

behavior may alter when AI is used, and the limited clinical significance 

of some findings, such as the biological behavior of screen-detected 

tumors, represent additional challenges. Also, the range of possible 

applications for any AI system is limited by the unique characteristics 

and intended purpose of any such system. A classic example is that even 
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if this is a part of a double reading scenario, an AI system which is 

cleared by the regulators for use as concurrent decision assisting 

equipment for mammography cannot be used as a stand-alone reader in the 

screening.  

 

Table 2. Summary of AI strategies for breast cancer screening and their 

effectiveness 

Publication AI implementation 

strategy 

Evaluation 

setting 

Dataset/ 

Modality 

Effect on 

Screening/ 

Performance 

Effect on 

Work-load 

Pacile et al. 

[72] 

Concurrent AI 

decision support 

Reader-based 

evaluation 

Screening 

mammography 

(DM) 

AUC increased 

from 0.769 to 

0.797 

Reading time 

increased by 9–

14% 

Conant et al. 

[73] 

Concurrent AI 

decision support 

Reader-focused 

study 

(retrospective) 

DBT AUC increased 

from 0.80 to 

0.895 

Reading time 

reduced by 53% 

Rodriguez-Ruiz 

et al. [74] 

Concurrent AI 

decision support 

Reader analysis 

experiment 

(retrospective) 

Screening 

mammography 

(DM) 

AUC increased 

from 0.87 to 

0.89 

No significant 

change in 

reading time 

Van Winkel et 

al. 

[47] 

Concurrent AI 

decision support 

Multi-reader 

multi-case 

study 

(retrospective) 

DBT AUC increased 

from 0.83 to 

0.86 

Reading time 

reduced by 12% 

Dembrower et 

al. [75] 

AI as a stand-

alone reader 

Paired 

prospective 

Analysis 

Screening 

mammography 

(DM) 

Non-inferior 

CDR with 

preserved or 

reduced recall 

rate 

Screening 

workload 

reduced by ~50% 

Larsen et al. 

[76] 

AI as a stand-

alone reader 

Retrospective 

performance 

analysis 

Screening 

mammography 

(DM) 

Comparable CDR 

with reduced 

recall rate 

Screen readings 

reduced by ~50% 

Sharma et al. 

[77] 

AI as a stand-

alone reader 

Historical data 

assessment 

Screening 

mammography 

(DM) 

Non-inferior 

cancer 

detection and 

recall rates 

Workload 

reduced by 30–

45% 

Leibig et al. 

[78] 

AI as a stand-

alone reader 

Retrospective 

comparative 

review 

Screening 

mammography 

(DM) 

Maintained or 

improved CDR 

with reduced 

recall rate 

Screening 

requirements 

reduced by ~50% 

Lång et al. 

[79] 

AI as a triage 

tool 

Randomized 

controlled 

experiment 

Screening 

mammography 

(DM) 

Non-inferior 

CDR with 

comparable 

recall rate 

44% fewer 

screen readings 

Lång et al. 

[80] 

AI triage for 

auto-normal 

labeling 

Retrospective 

data 

analysis 

Screening 

mammography 

(DM) 

Maintained 

sensitivity and 

recall rate 

19% fewer 

readings 

Raya-Povedano 

et al. [81] 

AI triage for 

auto-normal 

labeling 

Historical 

review 

Digital 

mammography 

(DM) and DBT 

Maintained 

sensitivity 

with 17% lower 

recall rate (P 

< .001) 

71% fewer DM 

and 72% fewer 

DBT readings 

Lauritzen et 

al. [84] 

AI triage for 

auto-normal 

labeling 

Retrospective 

out-come 

evaluation 

Screening 

mammography 

(DM) 

Non-inferior 

sensitivity 

with 19% lower 

recall rate 

Workload 

reduced by 63% 

Dembrower et 

al. [85] 

AI triage for 

auto-normal 

labeling 

Retrospective 

impact analysis 

Screening 

mammography 

(DM) 

Maintained 

cancer 

detection in 

simulation-

based analysis 

60% fewer 

readings 

Shoshan et al. 

[82] 

AI triage for 

auto-normal 

labeling 

Retrospective 

efficiency 

study 

 

DBT Maintained 

sensitivity 

with 25% lower 

recall rate (P 

= .002) 

40% fewer 

DBT readings 

Abbreviations 

and 

performance 

metrics 

   Recall rate: 

proportion of 

screened cases 

recalled for 

additional 

assessment 

Sensitivity: 

true positive 

rate; 

Specificity: 

true negative 

rate 
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5. CONCLUSION AND RECOMMENDATIONS 

The analyzed literature also demonstrates that artificial 

intelligence has significant potential to improve the process of 

screening and diagnostic tests of breast cancer, but also shows 

significant limitations that prevent its use in the clinic on a regular 

basis. AI systems based on imaging and applied to mammography, 

ultrasound, MRI, and histopathology have been shown to be highly 

sensitive and display higher cancer detection rates especially when 

utilized to support concurrent decision making or triage, although these 

advantages are often accompanied by increased false-positive/recall 

rates, which has concerns about overdiagnosis and unnecessary follow-

up. Most of the reported performance improvements are based on 

retrospective or enriched datasets that do not necessarily reflect the 

actual screening population in the real-world situation, which adds to 

dataset bias and further generalizability. Multi-modal AI methods which 

combine imaging with clinical or molecular data are better at subtype 

classification and have better prognostic performance, but their 

clinical implementation is limited by data scarcity, lack of 

interoperability, and multi-source data integration complexity. 

Explainable AI algorithms such as SHAP, Grad-CAM and LIME are significant 

in enhancing transparency and clinician confidence, and their post-hoc 

disposition and sensitivity to model and data fluctuations can lead to 

unreliable and possibly misguided explanations. Moreover, the lack of 

external and prospective validation, regulatory and implementation 

obstacles and imbalances in training datasets are still limiting to real 

world deployment. These issues can be resolved by standardized evaluation 

systems, varied and quality data, effective explainability policies, and 

future multi-centre clinical trials that will validate that AI systems 

offer reliable, fair, and clinically significant advantages to breast 

cancer diagnosis. 

The use of artificial intelligence in breast cancer screening and 

diagnosis has made considerable advances and has shown the capacity to 

enhance the quality of the diagnostic process, decrease the inter-

observer variability, and simplify the clinical processes of radiology 

and pathology. AI systems can be conveniently used as co-decision-support 

systems, independent readers, or triage systems, which means that they 

can be flexibly implemented, depending on the needs of screening programs 

and their available resources as outlined in this review. All these 

applications highlight the possibility of AI as the efficiency booster 

and the ability to provide a more personalized management of patients. 

Nevertheless, clinical translation cannot be done on a large scale 

unless a number of crucial issues are resolved. Most of the available 

evidence is based on retrospective studies and single-centre studies 

which may not reflect the heterogeneity of real-life screening 

populations, imaging protocols and clinical practice. Subsequent studies 

ought then to focus on the more important studies that are of large 

scale, prospective clinical trials, and federated and multi-center 

datasets so that their impact becomes more robust and representative of 

other demographic groups. Standardized evaluation metrics and reporting 

systems are needed to facilitate meaningful comparison among AI systems 

and also to facilitate regulatory approval. Along with the explanation 

of AI and clinician-in-the-loop, they should be integrated to enhance 

transparency, trust, and clinical accountability. These methodological, 

technical, and regulatory gaps are the key to allowing AI to play a 

safe, fair, and sustainable role of an assistant, but not a substitute, 

of radiologists and pathologists in the routine management of breast 

cancer. 

 

 



 
 

 
 

 
 

 

142  

 

 

Maral, A.M., Erdem, O.A., and Söğüt, E., 

Engineering Sciences, 2025, 20(4):129-147.  

CONFLICT OF INTEREST 

The author(s) declare that they have no potential conflict of 

interest. 

 

FINANCIAL DISCLOSURE 

This research received no financial support. 

 

DECLARATION OF ETHICAL STANDARDS 

The authors of the article declare that the materials and methods 

used did not require ethics committee approval and/or regulatory approval. 

 

REFERENCES 

[1]  Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, 

L.A., Minihan, A., et al., (2022). Breast cancer statistics, CA 

Cancer J Clin, 72:524–541. 

[2]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., 

Soerjomataram, I., Jemal, A., et al., (2021). Global cancer 

statistics 2020: GLOBOCAN estimates of incidence and mortality 

worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 

71:209–249. 

[3]  Taylor, C., McGale, P., Probert, J., Broggio, J., Charman, J., 

Darby, S.C., et al., (2023). Breast cancer mortality in 500 000 

women with early invasive breast cancer diagnosed in England, 

1993–2015: population based observational cohort study. BMJ, 

381:e074684. 

[4] Marmot, M.G., Altman, D.G., Cameron, D.A., Dewar, J.A., 

Thompson, S.G., and Wilcox, M., (2013). The benefits and harms 

of breast cancer screening: an independent review. Br J Cancer, 

108:2205–2240. 

[5]  The Royal College of Radiologists, (2022). RCR Clinical 

Radiology Workforce Census 2022. 

[6]  Metter, D.M., Colgan, T.J., Leung, S.T., Timmons, C.F., and 

Park, J.Y., (2019). Trends in the US and Canadian pathologist 

workforces from 2007 to 2017. JAMA Netw Open, 2:e194337. 

[7]  Connor, S.J., Lim, Y.Y., Tate, C., Entwistle, H., Morris, J., 

Whiteside, S., et al., (2012). A comparison of reading times in 

full-field digital mammography and digital breast tomosynthesis. 

Breast Cancer Res, 14:P26. 

[8]  Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, 

T., Tosteson, A.N., et al., (2015). Diagnostic concordance among 

pathologists interpreting breast biopsy specimens. JAMA, 

313:1122–1132. 

[9]  Acs, B., Fredriksson, I., Rönnlund, C., Hagerling, C., Ehinger, 

A., Kovács, A., et al., (2021). Variability in breast cancer 

biomarker assessment and the effect on oncological treatment 

decisions: a nationwide 5-year population-based study. Cancers 

(Basel), 13:1166. 

[10] Fernandez, A.I., Liu, M., Bellizzi, A., Brock, J., Fadare, O., 

Hanley, K., et al., (2022). Examination of low ERBB2 protein 

expression in breast cancer tissue. JAMA Oncol, 8:1–4. 

[11] Kim, S.H., Lee, E.H., Jun, J.K., Kim, Y.M., Chang, Y.W., Lee, 

J.H., et al., (2019). Interpretive performance and inter-

observer agreement on digital mammography test sets. Korean J 

Radiol, 20:218–224. 

[12] Whitney, J., Corredor, G., Janowczyk, A., Ganesan, S., Doyle, 

S., Tomaszewski, J., et al., (2018). Quantitative nuclear 

histomorphometry predicts Oncotype DX risk categories for early 

stage ER+ breast cancer. BMC Cancer, 18:610. 



 
 

 
 

 
 

 

143  

 

 

Maral, A.M., Erdem, O.A., and Söğüt, E., 

Engineering Sciences, 2025, 20(4):129-147.  

[13] Rajpurkar, P., Chen, E., Banerjee, O., and Topol, E.J., (2022). 

AI in health and medicine. Nat Med, 28:31–38. 

[14] Kann, B.H., Hosny, A., and Aerts, H.J., (2021). Artificial 

intelligence for clinical oncology. Cancer Cell, 39:916–927. 

[15] Niazi, M.K., Parwani, A.V., and Gurcan, M.N., (2019). Digital 

pathology and artificial intelligence. Lancet Oncol, 20:e253–

e261. 

[16] Hickman, S.E., Baxter, G.C., and Gilbert, F.J., (2021). Adoption 

of artificial intelligence in breast imaging: evaluation, 

ethical constraints and limitations. Br J Cancer, 125:15–22. 

[17] Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., 

Poortmans, P., Rubio, I.T., et al., (2019). Early breast cancer: 

ESMO clinical practice guidelines for diagnosis, treatment and 

follow-up. Ann Oncol, 30:1194–1220. 

[18] Gradishar, W.J., Moran, M.S., Abraham, J., Aft, R., Agnese, D., 

Allison, K.H., et al., (2022). Breast cancer, version 3.2022, 

NCCN clinical practice guidelines in oncology. J Natl Compr Canc 

Netw, 20:691–722. 

[19] Saslow, D., Boetes, C., Burke, W., Harms, S., Leach, M.O., 

Lehman, C.D., et al., (2007). American Cancer Society guidelines 

for breast screening with MRI as an adjunct to mammography. CA 

Cancer J Clin, 57:75–89. 

[20] Tice, J.A., Miglioretti, D.L., Li, C.S., Vachon, C.M., Gard, 

C.C., and Kerlikowske, K., (2015). Breast density and benign 

breast disease: risk assessment to identify women at high risk 

of breast cancer. J Clin Oncol, 33:3137–3143. 

[21] Gail, M.H., (2020). Choosing breast cancer risk models: 

importance of independent validation. J Natl Cancer Inst, 

112:433–435. 

[22] Holm, J., Li, J., Darabi, H., Eklund, M., Eriksson, M., 

Humphreys, K., et al., (2016). Associations of breast cancer 

risk prediction tools with tumor characteristics and metastasis. 

J Clin Oncol, 34:251–258. 

[23] Gilbert, F.J., Tucker, L., Gillan, M.G., Willsher, P., Cooke, 

J., Duncan, K.A., et al., (2015). The TOMMY trial: a comparison 

of tomosynthesis with digital mammography in the UK NHS Breast 

Screening Programme – a multicentre retrospective reading study 

comparing the diagnostic performance of digital breast 

tomosynthesis and digital mammography with digital mammography 

alone. Health Technol Assess, 19:i–ixxv, 1–136. 

[24] Waite, S., Scott, J., Gale, B., Fuchs, T., Kolla, S., and Reede, 

D., (2017). Interpretive error in radiology. American Journal of 

Roentgenology, 208(4):739-749. 

[25] Redondo, A., Comas, M., Macià, F., Ferrer, F., Murta-Nascimento, 

C., Maristany, M.T., et al., (2012). Inter- and intraradiologist 

variability in the BI-RADS assessment and breast density 

categories for screening mammograms. Br J Radiol, 85:1465–1470. 

[26] Rai, H.M., (2024). Cancer detection and segmentation using 

machine learning and deep learning techniques: a review. 

Multimed Tools Appl, 83:27001–27035. 

[27] Liu, Z., Lin, F., Huang, J., Wu, X., Wen, J., Wang, M., et al., 

(2023). A classifier-combined method for grading breast cancer 

based on Dempster-Shafer evidence theory. Quant Imaging Med 

Surg, 13:3288. 

[28] Kumaraswamy, E., Kumar, S., and Sharma, M., (2023). An invasive 

ductal carcinomas breast cancer grade classification using an 

ensemble of convolutional neural networks. Diagnostics, 13:1977. 

[29] Huang, Y., Zeng, P., and Zhong, C., (2024). Classifying breast 

cancer subtypes on multi-omics data via sparse canonical 



 
 

 
 

 
 

 

144  

 

 

Maral, A.M., Erdem, O.A., and Söğüt, E., 

Engineering Sciences, 2025, 20(4):129-147.  

correlation analysis and deep learning. BMC Bioinformatics, 

25:132. 

[30] Guo, H., Li, M., Liu, H., Chen, X., Cheng, Z., Li, X., et al., 

(2024). Multi-threshold image segmentation based on an improved 

salp swarm algorithm: case study of breast cancer pathology 

images. Comput Biol Med, 168:107769. 

[31] Rajoub, B., Qusa, H., Abdul-Rahman, H., and Mohamed, H., (2024). 

Segmentation of breast tissue structures in mammographic images. 

In: Artificial Intelligence Image Processing in Medical Imaging, 

pp. 115–146. 

[32] Soliman, A., Li, Z., and Parwani, A.V., (2024). Artificial 

intelligence’s impact on breast cancer pathology: a literature 

review. Diagn Pathol, 19:1–18. 

[33] Gallagher, W.M., McCaffrey, C., Jahangir, C., Murphy, C., Burke, 

C., and Rahman, A., (2024). Artificial intelligence in digital 

histopathology for predicting patient prognosis and treatment 

efficacy in breast cancer. Expert Rev Mol Diagn, 24:363–377. 

[34] Lundberg, S.M., and Lee, S.-I., (2017). A unified approach to 

interpreting model predictions. In: Advances in Neural 

Information Processing Systems, 30. 

[35] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, 

D., and Batra, D., (2017). Grad-CAM: visual explanations from 

deep networks via gradient-based localization. In: Proceedings 

of the IEEE International Conference on Computer Vision, pp. 

618–626. 

[36] Ribeiro, M.T., Singh, S., and Guestrin, C., (2016). Why should I 

trust you? Explaining the predictions of any classifier. In: 

Proceedings of the 22nd ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, pp. 1135–1144. 

[37] Sweetlin, E.J., and Saudia, S., (2021). A review of machine 

learning algorithms on different breast cancer datasets. In: 

International Conference on Big Data, Machine Learning, and 

Applications, pp. 659–673. Springer. 

[38] Heiliger, L., Sekuboyina, A., Menze, B., Egger, J., and 

Kleesiek, J., (2023). Beyond medical imaging – a review of 

multimodal deep learning in radiology. Authorea. 

[39] Laokulrath, N., Gudi, M.A., Deb, R., Ellis, I.O., and Tan, P.H., 

(2024). Invasive breast cancer reporting guidelines: ICCR, CAP, 

RCPath, RCPA datasets and future directions. Diagn Histopathol, 

30:87–99. 

[40] Brancati, N., Anniciello, A.M., Pati, P., Riccio, D., 

Scognamiglio, G., Jaume, G., et al., (2022). BRACS: a dataset 

for breast carcinoma subtyping in HE histology images. Database, 

2022:baac093. 

[41] Aksac, A., Demetrick, D.J., Ozyer, T., and Alhajj, R., (2019). 

BReCaHaD: a dataset for breast cancer histopathological 

annotation and diagnosis. BMC Res Notes, 12:1–3. 

[42] The Cancer Genome Atlas (TCGA), (2023). Genomic Data Commons 

Data Portal (GDC), TCGA-BRCA. Available at: 

https://portal.gdc.cancer.gov/projects/TCGA-BRCA (accessed July 

07, 2023). 

[43] Martel, A.L., Nofech-Mozes, S., Salama, S., Akbar, S., and 

Peikari, M., (2019). Assessment of residual breast cancer 

cellularity after neoadjuvant chemotherapy using digital 

pathology. Cancer Imaging Arch. 

[44] Huang, Z., Shao, W., Han, Z., Alkashash, A.M., De la Sancha, C., 

Parwani, A.V., et al., (2023). Artificial intelligence reveals 

features associated with breast cancer neoadjuvant chemotherapy 

https://portal.gdc.cancer.gov/projects/TCGA-BRCA


 
 

 
 

 
 

 

145  

 

 

Maral, A.M., Erdem, O.A., and Söğüt, E., 

Engineering Sciences, 2025, 20(4):129-147.  

responses from multi-stain histopathologic images. NPJ Precis 

Oncol, 7:14. 

[45] The Genotype-Tissue Expression (GTEx) Project, (2023). GTEx 

portal. Available at: https://gtexportal.org/home/histologyPage 

(accessed July 07, 2023). 

[46] National Cancer Institute Clinical Proteomic Tumor Analysis 

Consortium, (2020). The Clinical Proteomic Tumor Analysis 

Consortium breast invasive carcinoma collection (CPTAC-BRCA). 

The Cancer Imaging Archive. Available at: 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?page

Id=70227748 (accessed July 07, 2023). 

[47] van Winkel, S.L., Rodriguez-Ruiz, A., Appelman, L., Gubern-

Merida, A., Karssemeijer, N., Teuwen, J., Wanders, A.J., 

Sechopoulos, I., and Mann, R.M., (2021). Impact of artificial 

intelligence support on accuracy and reading time in breast 

tomosynthesis image interpretation: a multi-reader multi-case 

study. Eur Radiol, 31(11):8682–8691. 

[48] Yan, R., Zhang, F., Rao, X., Lv, Z., Li, J., Zhang, L., et al., 

(2021). Richer fusion network for breast cancer classification 

based on multimodal data. BMC Med Inform Decis Mak, 21:1–15. 

[49] Alam, T., Shia, W.C., Hsu, F.R., and Hassan, T., (2023). 

Improving breast cancer detection and diagnosis through semantic 

segmentation using the UNet3+ deep learning framework. 

Biomedicines, 11:1536. 

[50] Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., 

Rubin, D.L., et al., (2017). Curated mammography data set for 

use in computer-aided detection and diagnosis research. Sci 

Data, 4:1–9. 

[51] Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, 

M.J., and Cardoso, J.S., (2012). INbreast: toward a full-field 

digital mammographic database. Acad Radiol, 19:236–248. 

[52] Prinzi, F., Insalaco, M., Orlando, A., Gaglio, S., and Vitabile, 

S., (2024). A YOLO-based model for breast cancer detection in 

mammograms. Cognit Comput, 16:107–120. 

[53] Choi, J.M., and Chae, H., (2023). MoBRCa-Net: a breast cancer 

subtype classification framework based on multi-omics attention 

neural networks. BMC Bioinformatics, 24:169. 

[54] Spanhol, F.A., Oliveira, L.S., Petitjean, C., and Heutte, L., 

(2015). A dataset for breast cancer histopathological image 

classification. IEEE Trans Biomed Eng, 63:1455–1462. 

[55] Srikantamurthy, M.M., Rallabandi, V.S., Dudekula, D.B., 

Natarajan, S., and Park, J., (2023). Classification of benign 

and malignant subtypes of breast cancer histopathology imaging 

using hybrid CNN-LSTM based transfer learning. BMC Med Imaging, 

23:19. 

[56] DataBioX, (2024). DataBioX datasets. Available at: 

https://databiox.com/datasets/ (accessed June 02, 2024). 

[57] Al-Dhabyani, W., Gomaa, M., Khaled, H., and Fahmy, A., (2020). 

Dataset of breast ultrasound images. Data Brief, 28:104863. 

[58] Lekamlage, C.D., Afzal, F., Westerberg, E., and Cheddad, A., 

(2020). Mini-DDSM: mammography-based automatic age estimation. 

In: 2020 3rd International Conference on Digital Medicine and 

Image Processing, pp. 1–6. ACM. 

[59] Sahu, A., Das, P.K., and Meher, S., (2023). High accuracy hybrid 

CNN classifiers for breast cancer detection using mammogram and 

ultrasound datasets. Biomed Signal Process Control, 80:104292. 

[60] Guo, D., Lu, C., Chen, D., Yuan, J., Duan, Q., Xue, Z., et al., 

(2024). A multimodal breast cancer diagnosis method based on 

https://gtexportal.org/home/histologyPage
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748
https://databiox.com/datasets/


 
 

 
 

 
 

 

146  

 

 

Maral, A.M., Erdem, O.A., and Söğüt, E., 

Engineering Sciences, 2025, 20(4):129-147.  

knowledge-augmented deep learning. Biomed Signal Process 

Control, 90:105843. 

[61] Hussein, M., Elnahas, M., and Keshk, A., (2024). A framework for 

predicting breast cancer recurrence. Expert Syst Appl, 

240:122641. 

[62] Kendall, E.J., Barnett, M.G., and Chytyk-Praznik, K., (2013). 

Automatic detection of anomalies in screening mammograms. BMC 

Med Imaging, 13:1–11. 

[63] Ahmed, L., Iqbal, M.M., Aldabbas, H., Khalid, S., Saleem, Y., 

and Saeed, S., (2023). Images data practices for semantic 

segmentation of breast cancer using deep neural network. J 

Ambient Intell Humaniz Comput, 14:15227–1543. 

[64] Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., 

and Zerhouni, N., (2021). A CNN-based methodology for breast 

cancer diagnosis using thermal images. Comput Methods Biomech 

Biomed Eng Imaging Vis, 9:131–145. 

[65] Parshionikar, S., and Bhattacharyya, D., (2024). An enhanced 

multi-scale deep convolutional orchard capsule neural network 

for multi-modal breast cancer detection. Healthc Anal, 5:100298. 

[66] Sivamurugan, J. and Sureshkumar, G., (2023). Applying dual 

models on optimized LSTM with U-Net segmentation for breast 

cancer diagnosis using mammogram images. Artif Intell Med, 

143:102626. 

[67] Liu, H., Shi, Y., Li, A., and Wang, M., (2024). Multi-modal 

fusion network with intra and inter-modality attention for 

prognosis prediction in breast cancer. Comput Biol Med, 

168:107796. 

[68] Paulo, S., (2017). Breast ultrasound image. Mendeley Data. 

[69] Raza, A., Ullah, N., Khan, J.A., Assam, M., Guzzo, A., and 

Aljuaid, H., (2023). DeepBreastCancerNet: a novel deep learning 

model for breast cancer detection using ultrasound images. Appl 

Sci, 13:2082. 

[70] Murata, T., Yoshida, M., Shiino, S., Ogawa, A., Watase, C., 

Satomi, K., et al., (2023). A prediction model for distant 

metastasis after isolated locoregional recurrence of breast 

cancer. Breast Cancer Res Treat, 199:57–66. 

[71] Sahu, Y., Tripathi, A., Gupta, R.K., Gautam, P., Pateriya, R.K., 

Gupta, A., et al., (2023). Computer aided diagnosis of breast 

cancer using histogram k-means segmentation technique. Multimed 

Tools Appl, 82:14055–14075. 

[72] Pacile, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J.M., 

and Fillard, P., (2020). Improving breast cancer detection 

accuracy of mammography with the concurrent use of an artificial 

intelligence tool. Radiol Artif Intell, 2(6):e190208. 

[73] Conant, E.F., Toledano, A.Y., Periaswamy, S., Fotin, S.V., Go, 

J., Boatsman, J.E., and Hoffmeister, J.W., (2019). Improving 

accuracy and efficiency with concurrent use of artificial 

intelligence for digital breast tomosynthesis. Radiol Artif 

Intell, 1(4):e180096. 

[74] Rodríguez-Ruiz, A., Krupinski, E., Mordang, J.-J., Schilling, 

K., Heywang-Köbrunner, S.H., Sechopoulos, I., and Mann, R.M., 

(2019). Detection of breast cancer with mammography: effect of 

an artificial intelligence support system. Radiology, 

290(2):305–314. 

[75] Dembrower, K., Crippa, A., Colon, E., Eklund, M., and Strand, 

F., (2023). Artificial intelligence for breast cancer detection 

in screening mammography in Sweden: a prospective, population-

based, paired-reader, non-inferiority study. Lancet Digit 

Health, 5:xxx–xxx. 



 
 

 
 

 
 

 

147  

 

 

Maral, A.M., Erdem, O.A., and Söğüt, E., 

Engineering Sciences, 2025, 20(4):129-147.  

[76] Larsen, M., Aglen, C.F., Hoff, S.R., Lund-Hanssen, H., and 

Hofvind, S., (2022). Possible strategies for use of artificial 

intelligence in screen-reading of mammograms, based on 

retrospective data from 122,969 screening examinations. Eur 

Radiol, 32(12):8238–8246. 

[77] Sharma, N., Ng, A.Y., James, J.J., Khara, G., Ambrozay, C.C., 

Austin, C.C., Fox, G., Glocker, B., Heindl, A., et al., (2023). 

Multi-vendor evaluation of artificial intelligence as an 

independent reader for double reading in breast cancer screening 

on 275,900 mammograms. BMC Cancer, 23(1):1–13. 

[78] Leibig, C., Brehmer, M., Bunk, S., Byng, D., Pinker, K., and 

Umutlu, L., (2022). Combining the strengths of radiologists and 

AI for breast cancer screening: a retrospective analysis. Lancet 

Digit Health, 4(7):e507–e519. 

[79] Lång, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogberg, 

C., Sartor, H., Hofvind, S., Andersson, I., and Rosso, A., 

(2023). Artificial intelligence-supported screen reading versus 

standard double reading in the Mammography Screening with 

Artificial Intelligence trial (MASAI): a clinical safety 

analysis of a randomised, controlled, non-inferiority, single-

blinded, screening accuracy study. Lancet Oncol, 24(8):936–944. 

[80] Lång, K., Dustler, M., Dahlblom, V., Åkesson, A., Andersson, I., 

and Zackrisson, S., (2021). Identifying normal mammograms in a 

large screening population using artificial intelligence. Eur 

Radiol, 31:1687–1692. 

[81] Raya-Povedano, J.L., Romero-Martín, S., Elías-Cabot, E., Gubern-

Merida, A., Rodríguez-Ruiz, A., and Álvarez-Benito, M., (2021). 

AI-based strategies to reduce workload in breast cancer 

screening with mammography and tomosynthesis: a retrospective 

evaluation. Radiology, 300(1):57–65. 

[82] Shoshan, Y., Bakalo, R., Gilboa-Solomon, F., Ratner, V., Barkan, 

E., Ozery-Flato, M., Amit, M., Khapun, D., Ambinder, E.B., 

Oluyemi, E.T., et al., (2022). Artificial intelligence for 

reducing workload in breast cancer screening with digital breast 

tomosynthesis. Radiology, 303(1):69–77. 

[83] Lång, K., (2024). Cancer detection in relation to type and stage 

in the randomised Mammography Screening with Artificial 

Intelligence trial (MASAI). In: European Congress of Radiology, 

Vienna, Austria. 

[84] Lauritzen, A.D., Rodríguez-Ruiz, A., von Euler-Chelpin, M.C., 

Lynge, E., Vejborg, I., Nielsen, M., Karssemeijer, N., and 

Lillholm, M., (2022). An artificial intelligence–based 

mammography screening protocol for breast cancer: outcome and 

radiologist workload. Radiology, 304(1):41–49. 

[85] Dembrower, K., Wåhlin, E., Liu, Y., Salim, M., Smith, K., 

Lindholm, P., Eklund, M., and Strand, F., (2020). Effect of 

artificial intelligence-based triaging of breast cancer 

screening mammograms on cancer detection and radiologist 

workload: a retrospective simulation study. Lancet Digit Health, 

2(9):e468–e474. 

 


