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A COMPARATIVE STUDY OF CNN AND TRANSFORMER-BASED DEEP LEARNING MODELS 

FOR TEA LEAF DISEASE RECOGNITION 

 

ABSTRACT 

This study presents a comparative analysis of six deep learning 

models for the automatic classification of eight different disease 

categories found in tea leaves. The dataset used in the study was divided 

into three parts with 70% training, 15% validation, and 15% testing 

ratios. As part of the experimental evaluation, five convolutional neural 

network (CNN) based architectures (ResNet50, DenseNet121, EfficientNet-

B0, MobileNetV3-Large, and ConvNeXt-Tiny) and one Transformer-based 

model (Vision Transformer, ViT-Small) were tested using the same training 

strategies. The models were trained using a transfer learning and fine-

tuning approach; performance metrics were reported based on accuracy, 

precision, recall, and F1-score values. In addition, the number of 

parameters and the prediction time per image were calculated for each 

model. Experimental results show that the DenseNet121 model achieved the 

highest success rate in the validation dataset, while the ConvNeXt-Tiny 

architecture achieved the highest accuracy and F1-score values in the 

standalone test dataset. The findings indicate that modern CNN-based 

architectures offer high generalization capabilities in the 

classification of tea leaf diseases. The results obtained serve as a 

comparative reference for future studies in the field of agricultural 

image analysis. 

Keywords: Tea Leaf Disease Classification, Deep Learning, 

Convolutional Neural Networks, Vision Transformer, 

Plant Disease Detection 

 

1. INTRODUCTION  

Tea (Camellia sinensis) is a strategic agricultural product that 

forms the raw material for one of the most widely consumed beverages 

globally. With daily consumption reaching billions of cups, tea has 

become both a product of high economic value and a primary source of 

income for millions of producers. Tea production is highly sensitive to 

biotic stress factors, particularly those targeting the leaf tissue. 

Fungal pathogens, bacterial infections, and leaf pests reduce 

photosynthetic efficiency, leading to significant losses in both yield 

and product quality. Some studies in the literature have reported that 

tea diseases can reduce annual yields by approximately 20% in large-

scale plantations [1]. 

Effective management of tea leaf diseases depends on the ability 

to diagnose them early and accurately. However, traditional diagnostic 

methods rely heavily on visual inspections carried out by specialists 

in the field. This process has limitations, such as being open to 
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subjective interpretation, requiring high labor costs, and having low 

applicability in large agricultural areas. In field conditions, variable 

light intensity, overlapping leaves, shade, rain marks, and complex 

background structures can negatively affect the accuracy of 

identification by the human eye [2 and 3]. For these reasons, many 

symptoms are overlooked in the early stages, leading to rapid disease 

spread and consequently greater productivity losses [1 and 2]. 

In recent years, artificial intelligence and image processing-

based approaches have become a significant research area in the automated 

detection of agricultural diseases. Deep learning models, particularly 

convolutional neural networks (CNNs), significantly improve 

classification performance by extracting features from raw images [1, 

2, and 3]. Furthermore, Transformer-based architectures such as Vision 

Transformer (ViT) offer an alternative approach to plant disease 

detection thanks to their ability to model long-range dependencies [2]. 

Studies on the detection of tea leaf diseases show that lightweight CNN 

architectures such as EfficientNet, DenseNet, and MobileNet provide high 

accuracy rates [3]. Furthermore, various hybrid approaches are presented 

in the literature. This approach has resulted in higher accuracy and 

computational efficiency compared to standalone models [2]. 

These studies demonstrate that deep learning offers a powerful 

solution for classifying tea leaf diseases, that segmentation-supported 

models improve accuracy by reducing background noise, that lightweight 

architectures are suitable for mobile and field-based applications, and 

that hybrid models combine performance and cost in a balanced way. In 

this context, systematic comparison of different architectural 

approaches serves as an important reference for future methods in 

agricultural image analysis. Therefore, there is growing interest in 

deep learning-based methods for the automated and highly accurate 

detection of tea leaf diseases. Deep learning models overcome the 

limitations of classical expert-based diagnostic processes, enabling 

real-time scanning of large areas and reducing yield losses through 

early diagnosis [1, 2, and 3]. 

This study comprehensively evaluates six different deep learning 

models for classifying eight disease categories observed in tea leaves. 

The analysis compares five CNN-based architectures ResNet50, 

DenseNet121, EfficientNet-B0, MobileNetV3-Large, and ConvNeXt-Tiny and 

the Vision Transformer (ViT-Small) model. All models were evaluated using 

the same training, validation, and testing separation; accuracy, recall, 

precision, and F1-score were reported as key performance metrics. In 

addition, computational characteristics such as model complexity, number 

of parameters, and estimation time were also analyzed. The study aims 

to reveal the performance differences of different architectural 

approaches in classifying tea leaf diseases and to serve as a comparative 

reference for future agricultural image analysis applications. 

While current studies show that different deep learning strategies 

are applicable in the detection of tea leaf diseases, comprehensive 

comparisons between models appear to be limited. The majority of studies 

in the literature report the performance of a single architecture or 

evaluate it based on a limited number of models. Furthermore, the 

comparability of results is reduced because the dataset, 

hyperparameters, training protocols, and data augmentation strategies 

vary within the scope of the study. This situation makes it difficult 

to clearly identify the strengths and weaknesses of different 

architectural approaches in tea leaf disease classification. 

On the other hand, while segmentation-supported methods and hybrid 

structures have been shown to have positive effects on accuracy 

enhancement, the relationship between mobile device applications, real-

time prediction performance, and model complexity with classification 



 

 

 
 

 

81 

 

 

 

Er, B. and Kaya, V., 

Technological Applied Sciences, 2025, 20(3):79-93.  

success has not yet been systematically analyzed. Although Transformer-

based visual models (Vision Transformers) are known to yield positive 

results in object classification, the literature does not clearly report 

how these architectures perform compared to CNN-based models in datasets 

with natural field conditions such as tea leaf diseases. In this context, 

evaluating CNN and Transformer architectures on the same dataset under 

equal training conditions offers an important opportunity for comparison 

regarding which architectural structure is more suitable for 

agricultural image analysis. 

In line with these requirements, this study aims to evaluate six 

different modern deep learning architectures for the classification of 

tea leaf diseases on the same dataset, with the same hyperparameter 

settings and training protocol. Model performance is examined not only 

with singular metrics such as accuracy, but also with multidimensional 

criteria such as F1-score, class-based error analysis, model parameter 

size, and prediction time. In this way, a comparative reference framework 

is provided for both accuracy-oriented and computationally cost-oriented 

decision-making processes.  

The findings of this study are expected to contribute to the design 

of real-time diagnostic systems at the field scale, the development of 

mobile farming applications, and the optimization of future tea disease 

detection models.  

This study offers the following contributions to the literature 

on image-based classification of tea leaf diseases: 

 A comprehensive comparison of six modern architectures 

representing different deep learning approaches was performed on 

the same dataset: five CNN-based models (ResNet50, DenseNet121, 

EfficientNet-B0, MobileNetV3-Large, ConvNeXt-Tiny) and one 

Transformer-based model (Vision Transformer – ViT-Small). 

 All models were evaluated using a uniform training protocol. 

Dataset splitting (70% training, 15% validation, 15% testing), 

hyperparameters, and optimization method steps were kept the same 

across all models. This approach provides a fair and reproducible 

evaluation infrastructure. 

 Model performance was reported using multiple metrics such as 

accuracy, class-based precision, sensitivity, and F1-score. In 

addition, confusion matrices were visualized to show the error 

distributions 

 Parameter size and prediction time per image were calculated for 

each architecture, thus examining the relationship between model 

complexity and classification performance. This evaluation 

presents findings aimed at establishing a balance between model 

performance and computational cost. 

 To improve the explainability of the model's decision-making 

mechanisms, Grad-CAM-based visual descriptions were generated, and 

the image regions underlying the classification decisions were 

analyzed. 

 The results provide a comparative reference framework for tea leaf 

disease detection; It provides descriptive and measurable outputs 

that can guide agricultural image analysis studies. 

The remaining sections of the study are structured as follows: The 

second section summarizes and evaluates current studies on disease 

detection and classification in tea leaves. The third section details 

the materials and methods of the study, including the dataset used, 

preprocessing steps, and deep learning-based models. The fourth section 

presents the findings obtained from the experiments and discusses the 

relevant analyses. Finally, the fifth section includes the main 

conclusions of the study and offers suggestions for future research. 
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2. RESEARCH SIGNIFICANCE  

This study addresses the need for reliable and objective 

identification of tea leaf diseases under real field conditions, where 

traditional expert-based diagnosis is time-consuming, subjective, and 

difficult to scale. The main objective is to comparatively evaluate CNN-

based and Transformer-based deep learning architectures for tea leaf 

disease recognition using the same dataset and identical training 

conditions. The study hypothesizes that modern CNN architectures provide 

stronger generalization than Transformer-based models in agricultural 

image classification tasks with limited data. Experimental results 

support this hypothesis, showing that CNN-based models, particularly 

ConvNeXt-Tiny, outperform the Vision Transformer in terms of test 

accuracy and F1-score. The findings offer practical guidance for 

selecting efficient deep learning models for real-time agricultural 

monitoring and precision farming applications. 

Highlights:  

 A fair and systematic comparison of CNN and Transformer-based 

models for tea leaf disease recognition is presented. 

 CNN-based architectures demonstrate stronger generalization 

performance than Vision Transformer under limited data conditions. 

 The results provide practical guidance for real-time and mobile 

agricultural disease detection systems. 

 

3. RELATED WORKS  

Research on the automated detection of tea leaf diseases has 

recently focused on deep learning-based approaches. 

Ahmed et al., in their comprehensive study on tea leaf disease 

classification, reported that the combined use of segmentation and 

classification methods contributed to improved performance. The study 

presented a method in which the leaf region was separated using the 

Segment Anything Model (SAM), and the symptom areas were then processed 

by a CNN-based classifier. The authors reported that this method of 

noise reduction improved the learning process and increased the accuracy 

in EfficientNet-based classification from 82% to 95.58%. The findings 

show that segmentation-supported models can provide an accuracy increase 

of approximately 10–13 points compared to raw image input [2]. 

Lightweight and mobile-focused methods are also being investigated 

in tea leaf disease detection studies. In this study, a wavelet-based 

lightweight CNN architecture called WaveLiteNet was proposed. Within the 

scope of the research, it was stated that the model achieved an accuracy 

rate of 98.7%, obtained high sensitivity values and offered stable 

prediction performance even in complex scenarios. In addition, it was 

stated that the model is suitable for real-time operation on mobile 

devices thanks to its low computational cost [1]. 

Approaches based on multi-model integration are also found in the 

literature. The combination of YOLOv7-based object detection and CNN 

classifier was evaluated as a hybrid approach and reported to have 

achieved the highest accuracy value on the dataset. The study indicates 

that the balance between performance and computational cost favors hybrid 

architectures [4]. 

Similarly, Transformer-based approaches have also begun to be 

applied in tea leaf disease detection. In the IEM-ViT-based model 

proposed by Zhang et al., the ViT architecture was combined with masking 

and extensive data augmentation strategies, achieving 93.78% accuracy 

and an approximate F1 score of 0.94 in classifying seven different tea 

diseases. The study reports that the ViT-based model provides significant 

advantages in both accuracy and F1-score compared to ResNet18 and VGG-

derived CNN architectures [5]. 
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The YOLO-Tea model was designed to improve tea leaf disease and 

pest detection by adding ACmix, CBAM, RFB, and GCNet modules to the 

YOLOv5 architecture. Through the integration of attention mechanisms and 

receptive field expansion strategies, the model's feature extraction 

success was enhanced while maintaining low resource consumption. 

Experimental results show that YOLO-Tea provides higher performance than 

YOLOv5 and other common object detection approaches, supporting the 

model's suitability for real-world applications [6]. 

Finally, in studies aimed at the automated identification of tea 

leaf diseases, segmentation and generative contrast network-based 

approaches are used to remove noise and reduce data imbalance in raw 

field images obtained under complex plantation conditions. In this 

context, methods combining conditional generative adversarial networks 

(IC-GAN) enhanced with two-stage image segmentation allow for the 

separation of disease regions from the background and the expansion of 

the dataset with synthetic samples. Segmentation strategies integrating 

graph cuts and support vector machines (SVMs) report significant 

improvements in recognition accuracy. Furthermore, generating synthetic 

disease images with IC-GAN improves classification performance by 

increasing the coverage of the training dataset. Studies using 

specialized deep learning architectures such as Inception Embedded 

Pooling Convolutional Neural Network (IDCNN) in the disease recognition 

task show that high accuracy, recall, and F1 values are obtained in 

three different tea disease types. Comparisons across different datasets 

reveal that segmentation and GAN-based data augmentation approaches 

contribute to the development of robust, highly accurate diagnostic 

systems adapted to field conditions [7]. 

These studies demonstrate that different deep learning strategies 

are applicable for disease detection in tea leaves, and that 

segmentation, lightweight architectures, and hybrid approaches stand out 

in terms of performance and efficiency. 

 

4. MATERIALS AND METHODS  

4.1. Dataset and image pre-processing 

In this study, an online accessible image dataset was used to 

classify eight different disease categories seen in tea leaves [8]. The 

dataset consists of leaf images collected under natural light conditions 

and in a field environment, with each class labeled according to symptom 

type. The classes included in the dataset are determined as follows: 

Algal leaf, Anthracnose, Bird eye spot, Brown blight, Gray light, 

Healthy, Red leaf spot and White spot. These classes represent common 

pathological symptoms observed on the surface of tea leaves. Table 1 

shows the number of images of tea leaf classes included in the dataset, 

and Figure 1 shows sample images of tea leaf classes included in the 

dataset.  

 

Table 1. Number of images per tea leaf class included in the dataset 

Sınıf Adı Görüntü Sayısı (#) 

Algal leaf 113 

Anthracnose 100 

Bird eye spot 100 

Brown blight 113 

Gray light 100 

Healthy 74 

Red leaf spot 143 

White spot 142 

Toplam 885 
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Figure 1. Sample images of tea leaf classes included in the dataset. 

(a) Algal leaf (b) Anthracnose (c) Bird eye spot (d) Brown blight (e) 

Gray light (f) Healthy (g) Red leaf spot (h) White spot 

 

The dataset was divided into three sub-categories—training, 

validation, and testing to enable objective model evaluation. The data 

splitting ratio was applied as 70% training, 15% validation, and 15% 

testing. Data splitting was performed using a random selection method, 

ensuring a balanced distribution of each class across all subsets. 

Although some studies in the literature have evaluated the dataset using 

a two-part method with 80% training and 20% testing, this study preferred 

a three-part split strategy to observe the model generalization 

performance more stably. This approach allows for the optimization of 

hyperparameter settings through the validation set and ensures the test 

set represents the final performance. All images have been standardized 

to ensure dimensionally consistent model inputs. Each image in the 

dataset was rescaled to 224×224 pixels according to the format required 

by the trained models. Image data were normalized for model inputs, and 

pixel values were converted to a 0–1 range. 

 

4.2. Deep Learning Models 

ResNet50 is an architecture designed to mitigate the gradient 

fading problem seen in deep networks by using residual connections. The 

model enables the efficient training of deeper networks by creating 

direct links between successive convolutional layers [9]. 

DenseNet121 enhances feature sharing and provides parameter 

efficiency by using dense connectivity between layers. In this structure, 

each layer receives feature maps from all preceding layers as input, 

thus strengthening the flow of information [10]. 

The EfficientNet-B0 model is based on a combined scaling approach 

that performs scaling of depth, width, and resolution dimensions through 

a common coefficient, aiming to achieve high accuracy with fewer 

parameters [11]. 

MobileNetV3-Large is a lightweight CNN model optimized for mobile 

and embedded systems. This architecture, which includes depth-separable 

convolutional structures and Squeeze-and-Excitation modules, provides a 

balance between low computational cost and classification performance 

[12]. 

The ConvNeXt-Tiny model is an architecture developed by 

restructuring convolutional networks according to modern design 

principles. This structure combines traditional CNN architecture with 

current optimization techniques, using block design and scaling 

strategies inspired by Transformer-based models [13]. 

The Vision Transformer (ViT-Small) model is an architecture that 

uses a multi-headed attention mechanism instead of convolution in visual 

classification tasks. In this approach, images are broken down into 
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fixed-size segments, and each segment is processed as a series of 

elements by the Transformer encoder. The model performs representation 

learning that takes global context into account and can simultaneously 

evaluate the relationships between all regions in the image. This 

structure, unlike CNN-based methods, is fundamentally based on 

attention-based global feature interactions instead of local feature 

extraction [14]. 

 

4.3. Training Strategy 

In this study, deep learning models for the classification of tea 

leaf diseases were trained using a transfer learning approach based on 

the reuse and adaptation of pre-trained network weights to the target 

dataset. All models were initialized with initial parameters trained on 

the ImageNet dataset, and the classification layer was reconfigured to 

represent the eight disease classes in the dataset. The training process 

aims to preserve the overall representational capacity of the model 

while learning about the distinctive features specific to each class. 

 

4.3.1. Transfer Learning 

Transfer learning is a method that allows models trained on large-

scale datasets to be adapted to new problems with limited data. According 

to Pan and Yang's comprehensive definition, previously learned 

information is transferred from a source task to a target task, thus 

improving learning performance in the new task [15]. In this study, CNN-

based architectures (ResNet50, DenseNet121, EfficientNet-B0, 

MobileNetV3-Large, ConvNeXt-Tiny) and the Transformer-based ViT-Small 

model were initialized with ImageNet pre-trained weights. While the pre-

trained layers provided a representation of general image features, the 

final classification layer was retrained in line with the target labels 

of the study. This method improves the parameter efficiency of the model, 

reduces training time, and enhances performance in scenarios with limited 

data.  

 

4.3.2. Fine-Tuning 

A fine-tuning method was applied to adapt the pre-trained models 

to the new dataset. In the first stage, only the classification layer 

was randomly initialized, while the other layers were kept constant. 

This strategy ensures the preservation of pre-trained filters, enabling 

rapid adaptation to the target mission from the outset. In the second 

stage, the final blocks of the model were gradually re-trained to ensure 

that the feature representations were aligned with disease classes. The 

gradual opening of the layers aims to preserve the pre-trained filters 

and reduce the risk of overfitting [16]. Thus, the model learned task-

specific features without losing the general visual information acquired 

in large-scale data. 

 

4.3.3. Hyperparameters 

All models were trained with the same hyperparameter settings to 

provide comparable performance evaluations. During training, the batch 

size was set to 16, and input images were processed at a resolution of 

224×224 pixels. The learning rate was initially set to 1×10⁻⁴ and remained 
constant in all experiments. The data loader is divided to include 70% 

of the training set, 15% of the validation set, and 15% of the test set. 

 

4.3.4. Loss Function, Optimizer ve Epoch Sayısı 

In the training process, multi-class cross-entropy loss was used 

as the loss function. This function measures the difference between the 

predicted class distribution and the actual class labels, and ensures 

the updating of model weights. The Adam optimization algorithm was 
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applied for the optimization process, and all parameters were updated 

using this method. Adam accelerates the gradient-based learning process 

by offering a momentum-based adaptive learning rate strategy. The 

training cycle was run for 20 epochs for all models, and loss and accuracy 

values were calculated on the validation data after each epoch. The 

weights recorded in the epoch with the highest validation accuracy were 

used for performance evaluation in the testing phase. 

 

5. RESULTS 

This section presents the performance results of six deep learning 

models used to classify eight disease classes found in tea leaves. All 

models were evaluated under the same training–validation–test split (70–

15–15). Accuracy, precision, recall, F1-score values, and inference time 

per image were reported as performance metrics. 

 

5.1. Accuracy and F1-score comparison 

The validation accuracy and F1 scores obtained for each model are 

summarized in Table 2. All models were evaluated using the same 

training/validation/testing section (70-15-15). Validation accuracy, the 

F1-Score representing the average across classes, and inference time 

results were obtained as performance metrics. The CNN-based ConvNeXt-

Tiny model demonstrates the highest performance on the validation data 

with the highest accuracy (0.94) and F1-Score (0.94). DenseNet121 and 

ResNet50 showed high performance with similar levels of accuracy (0.93) 

and F1-Score values. The Vision Transformer (ViT-Small) model performed 

worse in terms of validation accuracy compared to CNN-based models. When 

the average prediction time was evaluated, the MobileNetV3-Large model 

achieved the fastest inference time. 

 

Table 2. Numerical performance results obtained from each model 

construct using the validation dataset 

Model Accuracy Precision Recall F1-Score 
Inference Time 

(ms/image) 

ResNet50 0.93 0.93 0.93 0.93 86.16 

DenseNet121 0.93 0.93 0.93 0.93 89.41 

EfficientNet-B0 0.90 0.91 0.90 0.90 64.34 

MobileNetV3-Large 0.93 0.92 0.92 0.92 55.97 

ConvNeXt-Tiny 0.94 0.94 0.94 0.94 78.36 

ViT-Small 0.90 0.90 0.90 0.90 157.87 

 

5.2. Training–Validation Curves 

The loss and accuracy curves obtained throughout the training 

process demonstrate the learning dynamics of the models (Figure 2). All 

models were trained using a transfer learning approach, and early 

saturation in validation performance was observed throughout the 

training. The low difference between the training and validation curves 

of the ConvNeXt-Tiny model indicates a more stable learning process. In 

particular, DenseNet121 and ConvNeXt-Tiny produced more stable 

validation curves and did not exhibit overfitting. 

When the training loss curves of the models are examined, it is 

seen that DenseNet121 and ConvNeXt-Tiny show rapid convergence behavior 

in the first epochs and limited fluctuation in loss values in subsequent 

epochs. ResNet50 and MobileNetV3-Large models, on the other hand, 

exhibited a more fluctuating appearance with increases in validation 

loss in certain epochs. In the EfficientNet-B0 and ViT-Small models, 

while the validation loss curves showed a plateau effect after certain 

epochs, the trend of gradually decreasing training loss continued. When 

comparing the accuracy curves, it is seen that the ConvNeXt-Tiny and 

DenseNet121 models brought the validation accuracy to a certain level 



 

 

 
 

 

87 

 

 

 

Er, B. and Kaya, V., 

Technological Applied Sciences, 2025, 20(3):79-93.  

in the early stages and maintained this value in subsequent epochs. In 

the ResNet50 and MobileNetV3-Large graphs, it was observed that the 

validation accuracy fluctuated in a wider range; and in the EfficientNet-

B0 and ViT-Small models, a periodic divergence occurred between training 

and validation accuracy. This situation reveals the level of adaptation 

that different architectures show to the validation set in the learning 

process.  

There is a clear tendency towards convergence in the training and 

validation accuracy curves for all models. In the DenseNet121 and 

ConvNeXt-Tiny graphs, it is seen that the validation accuracy remained 

at high values from the early epochs; The EfficientNet-B0 and ViT-Small 

models appear to have lower validation accuracy. Additionally, the fact 

that the validation curve of ConvNeXt-Tiny shows a similar trend to the 

training curve indicates that the overall performance is stable during 

the training process. 
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Figure 2. Train-validation loss graphs and success-accuracy graphs for 

each deep learning method. (a) Resnet50 (b) DenseNet121 (c) 

EfficientNet-B0 (d) MobileNetV3 (e) ConvNeXt-Tiny (f) Vit-Small  

 

5.3. Confusion Matrix 

The class-based performance of the models was evaluated using 

confusion matrices (Figure 3). For each model, the correct and incorrect 

classification distributions of eight classes were analyzed and 

visualized in the matrix. The ConvNeXt-Tiny and DenseNet121 models offer 

more balanced performance across their classes. Both models show that 

the “Healthy”, “Red leaf spot”, and “Anthracnose” classes have high 

accuracy rates. Relatively lower success rates were observed in some 

classes in the EfficientNet-B0 and ViT-Small models. When the confusion 

matrices are examined, it is seen that in the ConvNeXt-Tiny and 

DenseNet121 models, errors are not concentrated in specific categories 

among classes, and incorrect classifications generally remain at a low 
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level. In both models, the "Healthy" class stands out with its high 

number of accurate classifications. In addition, the "Red leaf spot" and 

"Anthracnose" classes were observed to have the highest correct 

classification rates among all models. The EfficientNet-B0 and ViT-Small 

models contain examples of cross-classification within specific classes. 

In the EfficientNet-B0 matrix, the misclassification rate is higher in 

the "Algal leaf" and "Brown blight" classes compared to other classes. 

In the ViT-Small matrix, it is observed that errors are concentrated in 

the "White spot" and "Brown blight" categories. Conversely, high accuracy 

levels are maintained in the "Healthy" class in both models. Comparing 

the matrices of the ResNet50 and MobileNetV3-Large models, it is observed 

that the overall accuracy levels are similar, and misclassifications are 

concentrated in limited categories. In the ResNet50 matrix, the "White 

spot" class is sometimes confused with the "Gray light" class. In the 

MobileNetV3-Large model, a relatively balanced distribution is observed 

among the classes, but errors are more frequent in the "Gray light" 

category compared to other classes.Overall, the confusion matrices show 

that all models exhibit different levels of success across the eight 

classes. ConvNeXt-Tiny and DenseNet121 presented a more homogeneous 

result in the distribution of success across classes. The EfficientNet-

B0 and ViT-Small models contain errors concentrated in certain classes. 

This indicates that classification performance can vary depending on the 

number of class samples, symptom similarity, and the architectural 

features of the model. 
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Figure 3. Confusion matrix graph for each deep learning method. (a) 

Resnet50 (b) DenseNet121 (c) EfficientNet-B0 (d) MobileNetV3 (e) 

ConvNeXt-Tiny (f) Vit-Small 

 

5.4. Explainability (Grad-CAM) 

The Grad-CAM method was used to visualize model decisions and 

evaluate the explainability of classification decisions [29]. With this 

approach, leaf regions that contribute most to classification decisions 

were shown via heat maps. Sample images representing each class were 

generated for the ConvNeXt-Tiny model; Correlation was observed between 

symptom regions and network activations. Grad-CAM visualizations 

increase the explainability of the results by revealing which 

morphological structures the model uses in the prediction process.  

The Grad-CAM method was applied to visualize the decision processes 

of the ConvNeXt-Tiny model. The obtained heat maps show that the model 

focuses particularly on symptom regions on the leaf in its classification 

decisions. Active focus areas are mostly concentrated on necrotic 

tissues, regions experiencing pigment loss, and irregular tissue 

structures. In healthy leaf samples, it was observed that the model's 

activations were distributed at a lower level along the leaf vein 

structure. These results show that deep feature maps can capture disease 

symptoms at the semantic level and that the model performs class 

differentiation based on visual anomalies in symptom regions. Grad-CAM 

outputs demonstrate that the model's predictive behavior is consistent 

with symptomatic domains and enhances the explainability of the decision-

making process. Figure 4 shows Grad-CAM examples of the ConvNeXt-Tiny 

model, the best deep learning model obtained in this study. 

 

 
Figure 4. Grad-CAM examples (ConvNeXt-Tiny) 
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6. DISCUSSION 

Experimental findings show that the DenseNet121 architecture 

achieved higher accuracy and F1 scores than other models during the 

validation phase. This result may be due to DenseNet's dense interconnect 

structure. Direct information flow between layers reduces gradient loss 

and increases feature reuse, resulting in more stable learning under 

limited data conditions. The fact that the visual symptoms of leaf 

diseases are quite similar to each other has made it advantageous to 

transfer fine details from different layers. The superior performance 

achieved during the validation phase reveals that DenseNet demonstrates 

high fit across the samples in its training distribution, but this 

success is not reflected to the same extent on the test set. This supports 

the findings that validation performance does not directly reflect 

generalization ability in agricultural imaging problems studied with 

limited data. 

According to the test results, ConvNeXt-Tiny achieved higher 

macro-F1 and accuracy values than all other models. Although DenseNet 

appeared to lead during the training and validation phases, ConvNeXt's 

better performance on an independent test set indicates that this model 

has a stronger generalization capacity. ConvNeXt is an architecture that 

follows modern CNN design principles; Normalization strategies, thanks 

to wider convolution windows and Transformer-like block arrangement, 

have been able to more effectively distinguish complex textural 

differences. The results show that ConvNeXt can deliver high performance 

on new samples without overfitting to the training data. When aiming for 

real-time detection of tea leaf diseases in field applications, test 

performance becomes a more decisive criterion compared to validation 

performance. 

The dataset was divided using the commonly used 70% training, 15% 

validation, and 15% testing ratios in the literature. This distribution 

aims to provide sufficient samples for the training process while 

allowing for the use of an independent validation section to reduce the 

risk of overfitting. However, the limited sample size of the tea leaf 

disease data led to performance differences between validation and test 

scores. The inability of models that achieved high performance in the 

validation set to maintain the same level in the test set suggests that 

the samples in the validation section may be more similar to the training 

distribution. This indicates that performance changes can be observed 

when data diversity is increased or when different splitting strategies 

(e.g., stratified split) are applied. The results reveal that data 

splitting strategies in agricultural image analysis have a direct impact 

on model selection.  

The models used in this study represent two main architectural 

approaches: CNN-based models (ResNet, DenseNet, EfficientNet, MobileNet, 

ConvNeXt) and a Transformer-based model (ViT-Small). Test results have 

shown that CNN-based models offer higher classification performance than 

the Transformer model, especially under limited data conditions. While 

ViT enables powerful representation learning on large-scale datasets, 

it typically requires additional pre-training or data augmentation 

mechanisms for high performance on smaller datasets. In contrast, CNNs, 

thanks to their principle of hierarchically capturing local spatial 

features, have been able to more effectively represent agricultural 

symptoms such as point spots, color changes, and textural anomalies on 

leaf surfaces. The findings reveal that the Transformer-based approach 

requires further improvement compared to CNNs in this problem.  

Model comparison results show that architectures with a high number 

of parameters do not always offer the highest accuracy. Models that are 

more compact in terms of parameters (e.g., MobileNetV3-Large) achieved 

high success in some classes but lagged behind ConvNeXt-Tiny and DenseNet 
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in the overall average. On the other hand, Transformer-based models such 

as ViT-Small, despite requiring higher computational costs, failed to 

deliver the expected performance on small datasets. This situation 

demonstrates that in problems where features are limited but semantically 

dense, such as leaf diseases, the feature extraction strategy, rather 

than model complexity, is the determining factor. In conclusion, it is 

understood that performance evaluation requires a combined 

interpretation of factors such as accuracy, computational cost, 

estimation time, and model size. 

 

7. CONCLUSION 

This study presents a comparative evaluation of six deep learning 

models aimed at classifying eight different disease categories in tea 

leaves. Experiments conducted on the same dataset revealed the 

performance of the models in terms of accuracy, F1-score, macro-average 

F1, and computational efficiency. The results show that DenseNet121 

demonstrated the highest performance in the validation phase; However, 

when evaluated on an independent test set, the ConvNeXt-Tiny model 

demonstrates stronger generalization capabilities than all other 

architectures. This finding suggests that modern CNN-based architectures 

can offer more stable performance compared to traditional approaches in 

agricultural imaging problems with limited data. 

The results support the real-world applicability of deep learning-

based systems for classifying visual signs of tea leaf diseases. High 

success rates, partial elimination of class imbalances, and fast 

prediction times demonstrate that these methodologies can be integrated 

with mobile applications, artificial vision-assisted drone systems, and 

smart agricultural robots in the field of agriculture. In particular, 

the ConvNeXt-Tiny model offers high accuracy despite a lower number of 

parameters, providing potential for real-time diagnostics even in 

devices with limited hardware capabilities. Such a system can reduce 

crop losses by enabling early disease detection, optimize pesticide use, 

and contribute to agricultural productivity. 

Future studies will focus on increasing data diversity and model 

optimization. Expanding the dataset with samples from different 

geographic regions, different climatic conditions, and various imaging 

devices can positively impact generalization performance. Furthermore, 

re-evaluating Vision Transformer architectures with larger-scale data 

pre-training, self-supervised learning, few-shot learning, or domain 

adaptation approaches can improve the success of Transformer-based 

models in small data scenarios. In addition, model compression, 

quantization, and hardware acceleration methods are suggested as future 

research areas to reduce computational costs for real-time agricultural 

applications. 

Overall, this study provides a comprehensive analysis of different 

deep learning architectures in the automated classification of tea leaf 

diseases, creating a comparative reference framework for future studies 

in the field of agricultural artificial vision. 
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