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A COMPARATIVE STUDY OF CNN AND TRANSFORMER-BASED DEEP LEARNING MODELS
FOR TEA LEAF DISEASE RECOGNITION

ABSTRACT

This study presents a comparative analysis of six deep learning
models for the automatic classification of eight different disease
categories found in tea leaves. The dataset used in the study was divided
into three parts with 70% training, 15% wvalidation, and 15% testing
ratios. As part of the experimental evaluation, five convolutional neural
network (CNN) based architectures (ResNet50, DenseNetl2l, EfficientNet-
B0, MobileNetV3-Large, and ConvNeXt-Tiny) and one Transformer-based
model (Vision Transformer, ViT-Small) were tested using the same training
strategies. The models were trained using a transfer learning and fine-
tuning approach; performance metrics were reported based on accuracy,
precision, recall, and Fl-score values. In addition, the number of
parameters and the prediction time per image were calculated for each
model. Experimental results show that the DenseNetl2l model achieved the
highest success rate in the validation dataset, while the ConvNeXt-Tiny
architecture achieved the highest accuracy and Fl-score values in the
standalone test dataset. The findings indicate that modern CNN-based
architectures offer high generalization capabilities in the
classification of tea leaf diseases. The results obtained serve as a
comparative reference for future studies in the field of agricultural
image analysis.

Keywords: Tea Leaf Disease Classification, Deep Learning,

Convolutional Neural Networks, Vision Transformer,
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1. INTRODUCTION

Tea (Camellia sinensis) 1s a strategic agricultural product that
forms the raw material for one of the most widely consumed beverages
globally. With daily consumption reaching billions of cups, tea has
become both a product of high economic value and a primary source of
income for millions of producers. Tea production is highly sensitive to
biotic stress factors, particularly those targeting the leaf tissue.
Fungal pathogens, bacterial infections, and leaf pests reduce
photosynthetic efficiency, leading to significant losses in both yield
and product quality. Some studies in the literature have reported that
tea diseases can reduce annual yields by approximately 20% in large-
scale plantations [1].

Effective management of tea leaf diseases depends on the ability
to diagnose them early and accurately. However, traditional diagnostic
methods rely heavily on visual inspections carried out by specialists
in the field. This process has limitations, such as being open to
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subjective interpretation, requiring high labor costs, and having low
applicability in large agricultural areas. In field conditions, variable
light intensity, overlapping leaves, shade, rain marks, and complex
background structures can negatively affect the accuracy of
identification by the human eye [2 and 3]. For these reasons, many
symptoms are overlooked in the early stages, leading to rapid disease
spread and consequently greater productivity losses [l and 2].

In recent years, artificial intelligence and image processing-
based approaches have become a significant research area in the automated
detection of agricultural diseases. Deep learning models, particularly

convolutional neural networks (CNNs) , significantly improve
classification performance by extracting features from raw images [1,
2, and 3]. Furthermore, Transformer-based architectures such as Vision

Transformer (ViT) offer an alternative approach to plant disease
detection thanks to their ability to model long-range dependencies [2].
Studies on the detection of tea leaf diseases show that lightweight CNN
architectures such as EfficientNet, DenseNet, and MobileNet provide high
accuracy rates [3]. Furthermore, various hybrid approaches are presented
in the literature. This approach has resulted in higher accuracy and
computational efficiency compared to standalone models [2].

These studies demonstrate that deep learning offers a powerful
solution for classifying tea leaf diseases, that segmentation-supported
models improve accuracy by reducing background noise, that lightweight
architectures are suitable for mobile and field-based applications, and
that hybrid models combine performance and cost in a balanced way. In
this context, systematic comparison of different architectural
approaches serves as an important reference for future methods in
agricultural image analysis. Therefore, there is growing interest in
deep learning-based methods for the automated and highly accurate
detection of tea leaf diseases. Deep learning models overcome the
limitations of classical expert-based diagnostic processes, enabling
real-time scanning of large areas and reducing yield losses through
early diagnosis [1, 2, and 3].

This study comprehensively evaluates six different deep learning
models for classifying eight disease categories observed in tea leaves.
The analysis compares five CNN-based architectures ResNet50,
DenseNetl21l, EfficientNet-B0O, MobileNetV3-Large, and ConvNeXt-Tiny and
the Vision Transformer (ViT-Small) model. All models were evaluated using
the same training, validation, and testing separation; accuracy, recall,
precision, and Fl-score were reported as key performance metrics. In
addition, computational characteristics such as model complexity, number
of parameters, and estimation time were also analyzed. The study aims
to reveal the performance differences of different architectural
approaches in classifying tea leaf diseases and to serve as a comparative
reference for future agricultural image analysis applications.

While current studies show that different deep learning strategies
are applicable in the detection of tea leaf diseases, comprehensive
comparisons between models appear to be limited. The majority of studies
in the literature report the performance of a single architecture or
evaluate it based on a limited number of models. Furthermore, the
comparability of results is reduced because the dataset,
hyperparameters, training protocols, and data augmentation strategies
vary within the scope of the study. This situation makes it difficult
to clearly identify the strengths and weaknesses of different
architectural approaches in tea leaf disease classification.

On the other hand, while segmentation-supported methods and hybrid
structures have been shown to have positive effects on accuracy
enhancement, the relationship between mobile device applications, real-
time prediction performance, and model complexity with classification
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success has not yet been systematically analyzed. Although Transformer-
based visual models (Vision Transformers) are known to yield positive
results in object classification, the literature does not clearly report
how these architectures perform compared to CNN-based models in datasets
with natural field conditions such as tea leaf diseases. In this context,
evaluating CNN and Transformer architectures on the same dataset under
equal training conditions offers an important opportunity for comparison
regarding which architectural structure is more suitable for
agricultural image analysis.

In line with these requirements, this study aims to evaluate six
different modern deep learning architectures for the classification of
tea leaf diseases on the same dataset, with the same hyperparameter
settings and training protocol. Model performance is examined not only
with singular metrics such as accuracy, but also with multidimensional
criteria such as Fl-score, class-based error analysis, model parameter
size, and prediction time. In this way, a comparative reference framework
is provided for both accuracy-oriented and computationally cost-oriented
decision-making processes.

The findings of this study are expected to contribute to the design
of real-time diagnostic systems at the field scale, the development of
mobile farming applications, and the optimization of future tea disease
detection models.

This study offers the following contributions to the literature
on image-based classification of tea leaf diseases:

e A comprehensive comparison of six modern architectures
representing different deep learning approaches was performed on
the same dataset: five CNN-based models (ResNet50, DenseNetl2l,
EfficientNet-BO, MobileNetV3-Large, ConvNeXt-Tiny) and one
Transformer-based model (Vision Transformer — ViT-Small).

e All models were evaluated using a uniform training protocol.
Dataset splitting (70% training, 15% wvalidation, 15% testing),
hyperparameters, and optimization method steps were kept the same
across all models. This approach provides a fair and reproducible
evaluation infrastructure.

e Model performance was reported using multiple metrics such as
accuracy, class-based precision, sensitivity, and Fl-score. In
addition, confusion matrices were visualized to show the error
distributions

e Parameter size and prediction time per image were calculated for
each architecture, thus examining the relationship between model
complexity and classification performance. This evaluation
presents findings aimed at establishing a balance between model
performance and computational cost.

e To improve the explainability of the model's decision-making
mechanisms, Grad-CAM-based visual descriptions were generated, and
the image regions underlying the classification decisions were
analyzed.

e The results provide a comparative reference framework for tea leaf
disease detection; It provides descriptive and measurable outputs
that can guide agricultural image analysis studies.

The remaining sections of the study are structured as follows: The
second section summarizes and evaluates current studies on disease
detection and classification in tea leaves. The third section details
the materials and methods of the study, including the dataset used,
preprocessing steps, and deep learning-based models. The fourth section
presents the findings obtained from the experiments and discusses the
relevant analyses. Finally, the fifth section includes the main
conclusions of the study and offers suggestions for future research.
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2. RESEARCH SIGNIFICANCE
This study addresses the need for reliable and objective
identification of tea leaf diseases under real field conditions, where
traditional expert-based diagnosis is time-consuming, subjective, and
difficult to scale. The main objective is to comparatively evaluate CNN-
based and Transformer-based deep learning architectures for tea leaf
disease recognition using the same dataset and identical training
conditions. The study hypothesizes that modern CNN architectures provide
stronger generalization than Transformer-based models in agricultural
image classification tasks with limited data. Experimental results
support this hypothesis, showing that CNN-based models, particularly
ConvNeXt-Tiny, outperform the Vision Transformer in terms of test
accuracy and Fl-score. The findings offer practical guidance for
selecting efficient deep learning models for real-time agricultural
monitoring and precision farming applications.
Highlights:
e A fair and systematic comparison of CNN and Transformer-based
models for tea leaf disease recognition is presented.
e CNN-based architectures demonstrate stronger generalization
performance than Vision Transformer under limited data conditions.
e The results provide practical guidance for real-time and mobile
agricultural disease detection systems.

3. RELATED WORKS

Research on the automated detection of tea leaf diseases has
recently focused on deep learning-based approaches.

Ahmed et al., in their comprehensive study on tea leaf disease
classification, reported that the combined use of segmentation and
classification methods contributed to improved performance. The study
presented a method in which the leaf region was separated using the
Segment Anything Model (SAM), and the symptom areas were then processed
by a CNN-based classifier. The authors reported that this method of
noise reduction improved the learning process and increased the accuracy
in EfficientNet-based classification from 82% to 95.58%. The findings
show that segmentation-supported models can provide an accuracy increase
of approximately 10-13 points compared to raw image input [2].

Lightweight and mobile-focused methods are also being investigated
in tea leaf disease detection studies. In this study, a wavelet-based
lightweight CNN architecture called WavelLiteNet was proposed. Within the
scope of the research, it was stated that the model achieved an accuracy
rate of 98.7%, obtained high sensitivity wvalues and offered stable
prediction performance even in complex scenarios. In addition, it was
stated that the model 1is suitable for real-time operation on mobile
devices thanks to its low computational cost [1].

Approaches based on multi-model integration are also found in the
literature. The combination of YOLOv7-based object detection and CNN
classifier was evaluated as a hybrid approach and reported to have
achieved the highest accuracy value on the dataset. The study indicates
that the balance between performance and computational cost favors hybrid
architectures [4].

Similarly, Transformer-based approaches have also begun to be
applied in tea leaf disease detection. In the IEM-ViT-based model
proposed by Zhang et al., the ViT architecture was combined with masking
and extensive data augmentation strategies, achieving 93.78% accuracy
and an approximate Fl1 score of 0.94 in classifying seven different tea
diseases. The study reports that the ViT-based model provides significant
advantages in both accuracy and Fl-score compared to ResNetl8 and VGG-
derived CNN architectures [5].
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The YOLO-Tea model was designed to improve tea leaf disease and
pest detection by adding ACmix, CBAM, RFB, and GCNet modules to the
YOLOvS5 architecture. Through the integration of attention mechanisms and
receptive field expansion strategies, the model's feature extraction
success was enhanced while maintaining low resource consumption.
Experimental results show that YOLO-Tea provides higher performance than
YOLOvS and other common object detection approaches, supporting the
model's suitability for real-world applications [6].

Finally, in studies aimed at the automated identification of tea
leaf diseases, segmentation and generative contrast network-based
approaches are used to remove noise and reduce data imbalance in raw
field images obtained under complex plantation conditions. In this
context, methods combining conditional generative adversarial networks
(IC-GAN) enhanced with two-stage image segmentation allow for the
separation of disease regions from the background and the expansion of
the dataset with synthetic samples. Segmentation strategies integrating
graph cuts and support vector machines (SVMs) report significant
improvements in recognition accuracy. Furthermore, generating synthetic
disease 1images with IC-GAN improves classification performance by
increasing the coverage of the training dataset. Studies wusing
specialized deep learning architectures such as Inception Embedded
Pooling Convolutional Neural Network (IDCNN) in the disease recognition
task show that high accuracy, recall, and Fl values are obtained in
three different tea disease types. Comparisons across different datasets
reveal that segmentation and GAN-based data augmentation approaches
contribute to the development of robust, highly accurate diagnostic
systems adapted to field conditions [7].

These studies demonstrate that different deep learning strategies
are applicable for disease detection in tea leaves, and that
segmentation, lightweight architectures, and hybrid approaches stand out
in terms of performance and efficiency.

4. MATERIALS AND METHODS

4.1. Dataset and image pre-processing

In this study, an online accessible image dataset was used to
classify eight different disease categories seen in tea leaves [8]. The
dataset consists of leaf images collected under natural light conditions
and in a field environment, with each class labeled according to symptom
type. The classes included in the dataset are determined as follows:
Algal 1leaf, Anthracnose, Bird eye spot, Brown blight, Gray 1light,
Healthy, Red leaf spot and White spot. These classes represent common
pathological symptoms observed on the surface of tea leaves. Table 1
shows the number of images of tea leaf classes included in the dataset,
and Figure 1 shows sample images of tea leaf classes included in the
dataset.

Table 1. Number of images per tea leaf class included in the dataset

Sinif Adi Goéruntld Sayisi (#)
Algal leaf 113
Anthracnose 100
Bird eye spot 100
Brown blight 113
Gray light 100
Healthy 74
Red leaf spot 143
White spot 142
Toplam 885
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Figure 1. Sample images of tea leaf classes included in the dataset.
(a) Algal leaf (b) Anthracnose (c) Bird eye spot (d) Brown blight (e)
Gray light (f) Healthy (g) Red leaf spot (h) White spot

The dataset was divided into three sub-categories—training,
validation, and testing to enable objective model evaluation. The data
splitting ratio was applied as 70% training, 15% validation, and 15%
testing. Data splitting was performed using a random selection method,
ensuring a balanced distribution of each class across all subsets.
Although some studies in the literature have evaluated the dataset using
a two-part method with 80% training and 20% testing, this study preferred
a three-part split strategy to observe the model generalization
performance more stably. This approach allows for the optimization of
hyperparameter settings through the validation set and ensures the test
set represents the final performance. All images have been standardized
to ensure dimensionally consistent model inputs. Each image 1in the
dataset was rescaled to 224x224 pixels according to the format required
by the trained models. Image data were normalized for model inputs, and
pixel values were converted to a 0-1 range.

4.2. Deep Learning Models

ResNet50 1is an architecture designed to mitigate the gradient
fading problem seen in deep networks by using residual connections. The
model enables the efficient training of deeper networks by creating
direct links between successive convolutional layers [9].

DenseNetl21 enhances feature sharing and provides parameter
efficiency by using dense connectivity between layers. In this structure,
each layer receives feature maps from all preceding layers as input,
thus strengthening the flow of information [10].

The EfficientNet-B0 model is based on a combined scaling approach
that performs scaling of depth, width, and resolution dimensions through
a common coefficient, aiming to achieve high accuracy with fewer
parameters [11].

MobileNetV3-Large is a lightweight CNN model optimized for mobile
and embedded systems. This architecture, which includes depth-separable
convolutional structures and Squeeze-and-Excitation modules, provides a
balance between low computational cost and classification performance
[12].

The ConvNeXt-Tiny model is an architecture developed Dby
restructuring convolutional networks according to modern design
principles. This structure combines traditional CNN architecture with
current optimization techniques, wusing block design and scaling
strategies inspired by Transformer-based models [13].

The Vision Transformer (ViT-Small) model is an architecture that
uses a multi-headed attention mechanism instead of convolution in visual
classification tasks. In this approach, images are broken down into
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fixed-size segments, and each segment 1is processed as a series of
elements by the Transformer encoder. The model performs representation
learning that takes global context into account and can simultaneously
evaluate the relationships Dbetween all regions 1in the image. This
structure, unlike CNN-based methods, is fundamentally Dbased on
attention-based global feature interactions instead of local feature
extraction [14].

4.3. Training Strategy

In this study, deep learning models for the classification of tea
leaf diseases were trained using a transfer learning approach based on
the reuse and adaptation of pre-trained network weights to the target
dataset. All models were initialized with initial parameters trained on
the ImageNet dataset, and the classification layer was reconfigured to
represent the eight disease classes in the dataset. The training process
aims to preserve the overall representational capacity of the model
while learning about the distinctive features specific to each class.

4.3.1. Transfer Learning
Transfer learning is a method that allows models trained on large-
scale datasets to be adapted to new problems with limited data. According

to Pan and Yang's comprehensive definition, ©previously learned
information is transferred from a source task to a target task, thus
improving learning performance in the new task [15]. In this study, CNN-
based architectures (ResNet50, DenseNetl121, EfficientNet-BO,

MobileNetV3-Large, ConvNeXt-Tiny) and the Transformer-based ViT-Small
model were initialized with ImageNet pre-trained weights. While the pre-
trained layers provided a representation of general image features, the
final classification layer was retrained in line with the target labels
of the study. This method improves the parameter efficiency of the model,
reduces training time, and enhances performance in scenarios with limited
data.

4.3.2. Fine-Tuning

A fine-tuning method was applied to adapt the pre-trained models
to the new dataset. In the first stage, only the classification layer
was randomly initialized, while the other layers were kept constant.
This strategy ensures the preservation of pre-trained filters, enabling
rapid adaptation to the target mission from the outset. In the second
stage, the final blocks of the model were gradually re-trained to ensure
that the feature representations were aligned with disease classes. The
gradual opening of the layers aims to preserve the pre-trained filters
and reduce the risk of overfitting [16]. Thus, the model learned task-
specific features without losing the general visual information acquired
in large-scale data.

4.3.3. Hyperparameters

All models were trained with the same hyperparameter settings to
provide comparable performance evaluations. During training, the batch
size was set to 16, and input images were processed at a resolution of
224x224 pixels. The learning rate was initially set to 1x107* and remained
constant in all experiments. The data loader is divided to include 70%
of the training set, 15% of the validation set, and 15% of the test set.

4.3.4. Loss Function, Optimizer ve Epoch Sayisi

In the training process, multi-class cross-entropy loss was used
as the loss function. This function measures the difference between the
predicted class distribution and the actual class labels, and ensures
the updating of model weights. The Adam optimization algorithm was
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applied for the optimization process, and all parameters were updated
using this method. Adam accelerates the gradient-based learning process
by offering a momentum-based adaptive learning rate strategy. The
training cycle was run for 20 epochs for all models, and loss and accuracy
values were calculated on the validation data after each epoch. The
weights recorded in the epoch with the highest validation accuracy were
used for performance evaluation in the testing phase.

5. RESULTS

This section presents the performance results of six deep learning
models used to classify eight disease classes found in tea leaves. All
models were evaluated under the same training-validation-test split (70-
15-15) . Accuracy, precision, recall, Fl-score values, and inference time
per image were reported as performance metrics.

5.1. Accuracy and Fl-score comparison

The validation accuracy and Fl1 scores obtained for each model are
summarized 1in Table 2. All models were evaluated using the same
training/validation/testing section (70-15-15). Validation accuracy, the
Fl-Score representing the average across classes, and inference time
results were obtained as performance metrics. The CNN-based ConvNeXt-
Tiny model demonstrates the highest performance on the validation data
with the highest accuracy (0.94) and Fl-Score (0.94). DenseNetl2l and
ResNet50 showed high performance with similar levels of accuracy (0.93)
and Fl-Score values. The Vision Transformer (ViT-Small) model performed
worse in terms of validation accuracy compared to CNN-based models. When
the average prediction time was evaluated, the MobileNetV3-Large model
achieved the fastest inference time.

Table 2. Numerical performance results obtained from each model
construct using the validation dataset

Model Accuracy | Precision | Recall | Fl-Score Inferegce Time
(ms/image)
ResNet50 0.93 0.93 0.93 0.93 86.16
DenseNetl121 0.93 0.93 0.93 0.93 89.41
EfficientNet-B0 0.90 0.91 0.90 0.90 64.34
MobileNetV3-Large 0.93 0.92 0.92 0.92 55.97
ConvNeXt-Tiny 0.94 0.94 0.94 0.94 78.36
ViT-Small 0.90 0.90 0.90 0.90 157.87

5.2. Training-Validation Curves

The loss and accuracy curves obtained throughout the training
process demonstrate the learning dynamics of the models (Figure 2). All
models were trained using a transfer learning approach, and early
saturation in wvalidation performance was observed throughout the
training. The low difference between the training and validation curves
of the ConvNeXt-Tiny model indicates a more stable learning process. In
particular, DenseNetl21 and ConvNeXt-Tiny produced more stable
validation curves and did not exhibit overfitting.

When the training loss curves of the models are examined, it is
seen that DenseNetl2l and ConvNeXt-Tiny show rapid convergence behavior
in the first epochs and limited fluctuation in loss values in subsequent
epochs. ResNet50 and MobileNetV3-Large models, on the other hand,
exhibited a more fluctuating appearance with increases 1in validation
loss in certain epochs. In the EfficientNet-B0O and ViT-Small models,
while the validation loss curves showed a plateau effect after certain
epochs, the trend of gradually decreasing training loss continued. When
comparing the accuracy curves, it 1s seen that the ConvNeXt-Tiny and
DenseNetl21l models brought the wvalidation accuracy to a certain level
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in the early stages and maintained this wvalue in subsequent epochs. In
the ResNet50 and MobileNetV3-Large graphs, it was observed that the
validation accuracy fluctuated in a wider range; and in the EfficientNet-
B0 and ViT-Small models, a periodic divergence occurred between training
and validation accuracy. This situation reveals the level of adaptation
that different architectures show to the validation set in the learning
process.

There is a clear tendency towards convergence in the training and
validation accuracy curves for all models. In the DenseNetl2l and
ConvNeXt-Tiny graphs, it is seen that the validation accuracy remained
at high values from the early epochs; The EfficientNet-B0O and ViT-Small
models appear to have lower validation accuracy. Additionally, the fact
that the validation curve of ConvNeXt-Tiny shows a similar trend to the
training curve indicates that the overall performance is stable during
the training process.
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Figure 2. Train-validation loss graphs and success-accuracy graphs for
each deep learning method. (a) Resnet50 (b) DenseNetl2l (c)
EfficientNet-BO (d) MobileNetV3 (e) ConvNeXt-Tiny (f) Vit-Small

5.3. Confusion Matrix

The class-based performance of the models was evaluated using
confusion matrices (Figure 3). For each model, the correct and incorrect
classification distributions of eight classes were analyzed and
visualized in the matrix. The ConvNeXt-Tiny and DenseNetl21l models offer
more balanced performance across their classes. Both models show that
the “Healthy”, “Red leaf spot”, and "“Anthracnose” classes have high
accuracy rates. Relatively lower success rates were observed in some
classes in the EfficientNet-B0O and ViT-Small models. When the confusion
matrices are examined, 1t 1s seen that in the ConvNeXt-Tiny and
DenseNetl21 models, errors are not concentrated in specific categories
among classes, and incorrect classifications generally remain at a low
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level. In both models, the "Healthy" class stands out with its high
number of accurate classifications. In addition, the "Red leaf spot" and
"Anthracnose" <classes were observed to have the highest correct
classification rates among all models. The EfficientNet-B0O and ViT-Small
models contain examples of cross-classification within specific classes.
In the EfficientNet-BO matrix, the misclassification rate is higher in
the "Algal leaf" and "Brown blight" classes compared to other classes.
In the ViT-Small matrix, it is observed that errors are concentrated in
the "White spot" and "Brown blight" categories. Conversely, high accuracy
levels are maintained in the "Healthy" class in both models. Comparing
the matrices of the ResNet50 and MobileNetV3-Large models, it is observed
that the overall accuracy levels are similar, and misclassifications are
concentrated in limited categories. In the ResNet50 matrix, the "White
spot" class is sometimes confused with the "Gray light" class. In the
MobileNetV3-Large model, a relatively balanced distribution is observed
among the classes, but errors are more frequent in the "Gray light"
category compared to other classes.Overall, the confusion matrices show
that all models exhibit different levels of success across the eight
classes. ConvNeXt-Tiny and DenseNetl2l presented a more homogeneous
result in the distribution of success across classes. The EfficientNet-
BO and ViT-Small models contain errors concentrated in certain classes.
This indicates that classification performance can vary depending on the
number of class samples, symptom similarity, and the architectural
features of the model.
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Figure 3. Confusion matrix graph for each deep learning method. (a)
Resnet50 (b) DenseNetl2l (c) EfficientNet-BO (d) MobileNetV3 (e)
ConvNeXt-Tiny (f) Vit-Small

5.4. Explainability (Grad-CAM)

The Grad-CAM method was used to visualize model decisions and
evaluate the explainability of classification decisions [29]. With this
approach, leaf regions that contribute most to classification decisions
were shown via heat maps. Sample images representing each class were
generated for the ConvNeXt-Tiny model; Correlation was observed between
symptom regions and network activations. Grad-CAM visualizations
increase the explainability of the results by revealing which
morphological structures the model uses in the prediction process.

The Grad-CAM method was applied to visualize the decision processes
of the ConvNeXt-Tiny model. The obtained heat maps show that the model
focuses particularly on symptom regions on the leaf in its classification
decisions. Active focus areas are mostly concentrated on necrotic
tissues, regions experiencing pigment loss, and irregular tissue
structures. In healthy leaf samples, it was observed that the model's
activations were distributed at a lower level along the leaf wvein
structure. These results show that deep feature maps can capture disease
symptoms at the semantic 1level and that the model performs class
differentiation based on visual anomalies in symptom regions. Grad-CAM
outputs demonstrate that the model's predictive behavior is consistent
with symptomatic domains and enhances the explainability of the decision-
making process. Figure 4 shows Grad-CAM examples of the ConvNeXt-Tiny
model, the best deep learning model obtained in this study.

Figure 4. Grad-CAM examples (ConvNeXt-Tiny)
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6. DISCUSSION

Experimental findings show that the DenseNetl2l architecture
achieved higher accuracy and Fl1 scores than other models during the
validation phase. This result may be due to DenseNet's dense interconnect
structure. Direct information flow between layers reduces gradient loss
and increases feature reuse, resulting in more stable learning under
limited data conditions. The fact that the visual symptoms of leaf
diseases are quite similar to each other has made it advantageous to
transfer fine details from different layers. The superior performance
achieved during the validation phase reveals that DenseNet demonstrates
high fit across the samples in its training distribution, but this
success 1s not reflected to the same extent on the test set. This supports
the findings that wvalidation performance does not directly reflect
generalization ability in agricultural imaging problems studied with
limited data.

According to the test results, ConvNeXt-Tiny achieved higher
macro-F1 and accuracy values than all other models. Although DenseNet
appeared to lead during the training and validation phases, ConvNeXt's
better performance on an independent test set indicates that this model
has a stronger generalization capacity. ConvNeXt is an architecture that
follows modern CNN design principles; Normalization strategies, thanks
to wider convolution windows and Transformer-like block arrangement,
have Dbeen able to more effectively distinguish complex textural
differences. The results show that ConvNeXt can deliver high performance
on new samples without overfitting to the training data. When aiming for
real-time detection of tea leaf diseases in field applications, test
performance becomes a more decisive criterion compared to validation
performance.

The dataset was divided using the commonly used 70% training, 15%
validation, and 15% testing ratios in the literature. This distribution
aims to provide sufficient samples for the training process while
allowing for the use of an independent validation section to reduce the
risk of overfitting. However, the limited sample size of the tea leaf
disease data led to performance differences between validation and test
scores. The inability of models that achieved high performance in the
validation set to maintain the same level in the test set suggests that
the samples in the validation section may be more similar to the training
distribution. This indicates that performance changes can be observed
when data diversity is increased or when different splitting strategies
(e.g., stratified split) are applied. The results reveal that data
splitting strategies in agricultural image analysis have a direct impact
on model selection.

The models used in this study represent two main architectural
approaches: CNN-based models (ResNet, DenseNet, EfficientNet, MobileNet,
ConvNeXt) and a Transformer-based model (ViT-Small). Test results have
shown that CNN-based models offer higher classification performance than
the Transformer model, especially under limited data conditions. While
ViT enables powerful representation learning on large-scale datasets,
it typically requires additional pre-training or data augmentation
mechanisms for high performance on smaller datasets. In contrast, CNNs,
thanks to their principle of hierarchically capturing local spatial
features, have been able to more effectively represent agricultural
symptoms such as point spots, color changes, and textural anomalies on
leaf surfaces. The findings reveal that the Transformer-based approach
requires further improvement compared to CNNs in this problem.

Model comparison results show that architectures with a high number
of parameters do not always offer the highest accuracy. Models that are
more compact in terms of parameters (e.g., MobileNetV3-Large) achieved
high success in some classes but lagged behind ConvNeXt-Tiny and DenseNet
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in the overall average. On the other hand, Transformer-based models such
as ViT-Small, despite requiring higher computational costs, failed to
deliver the expected performance on small datasets. This situation
demonstrates that in problems where features are limited but semantically
dense, such as leaf diseases, the feature extraction strateqgy, rather
than model complexity, 1s the determining factor. In conclusion, it is
understood that performance evaluation requires a combined
interpretation of factors such as accuracy, computational cost,
estimation time, and model size.

7. CONCLUSION

This study presents a comparative evaluation of six deep learning
models aimed at classifying eight different disease categories in tea
leaves. Experiments conducted on the same dataset revealed the
performance of the models in terms of accuracy, Fl-score, macro-average
Fl, and computational efficiency. The results show that DenseNetl2l
demonstrated the highest performance in the validation phase; However,
when evaluated on an independent test set, the ConvNeXt-Tiny model
demonstrates stronger generalization capabilities than all other
architectures. This finding suggests that modern CNN-based architectures
can offer more stable performance compared to traditional approaches in
agricultural imaging problems with limited data.

The results support the real-world applicability of deep learning-
based systems for classifying wvisual signs of tea leaf diseases. High
success rates, partial elimination of class imbalances, and fast
prediction times demonstrate that these methodologies can be integrated
with mobile applications, artificial vision-assisted drone systems, and
smart agricultural robots in the field of agriculture. In particular,
the ConvNeXt-Tiny model offers high accuracy despite a lower number of
parameters, providing potential for real-time diagnostics even in
devices with limited hardware capabilities. Such a system can reduce
crop losses by enabling early disease detection, optimize pesticide use,
and contribute to agricultural productivity.

Future studies will focus on increasing data diversity and model
optimization. Expanding the dataset with samples from different
geographic regions, different climatic conditions, and various imaging
devices can positively impact generalization performance. Furthermore,
re-evaluating Vision Transformer architectures with larger-scale data
pre-training, self-supervised learning, few-shot learning, or domain
adaptation approaches can improve the success of Transformer-based
models in small data scenarios. In addition, model compression,
quantization, and hardware acceleration methods are suggested as future
research areas to reduce computational costs for real-time agricultural
applications.

Overall, this study provides a comprehensive analysis of different
deep learning architectures in the automated classification of tea leaf
diseases, creating a comparative reference framework for future studies
in the field of agricultural artificial wvision.
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