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CONFORMAL MAPPINGS OF FINITE RIEMANN SURFACES

ABSTRACT

The purpose of this work is to obtain a new type of conformal
mappings of compact finite Riemann surfaces bounded by finitely many
analytic Jordan curves. This is achieved by making use of Riemann-Roch
theorem. As is well-known, every plane region is conformally
equivalent to a parallel slit region. This theorem was carried over
the case of Riemann surfaces with finite genus. The other types of
conformal mappings can be found in the different literatures. It will
be now deal with a different conformal mapping from those. It is a
finite sheeted covering surface of the extended complex plane whose
each boundary component consists of a closed interval on real axis.

Keywords: Riemann Surfaces, Conformal Mapping, Jordan Curves,

Riemann-Roch Theorem, Meromorphic Function

SONLU RIEMANN YUZEYLERININ KONFORMAL DONUSUMLERI

OZET
Bu c¢alismanin amaci, sonlu sayida analitik Jordan egdrileri ile
sinirlanan kompakt sonlu Riemann ylizeylerinin konformal doniistmlerinin
yeni bir tipini elde etmektir. Bu, Riemann-Roch teoreminden
yvararlanilarak elde edilir. Bilindigi {zere, her bir dizlem bolgesi
konformal olarak paralel bir yarik bdlgeye esdederdir. Bu teorem cinsi
sonlu Riemann yilzeylerine uygulanmistir. Konformal dontUsimlerin diger
tipleri farkli eserlerde incelenmistir. Burada farkli bir konformal
dontistimle ilgilenilecektir. Her sinir bileseni gergel eksen {izerinde
ve kapali bir aralik genisletilmis kompleks dizlemin sonlu Ortiisiidiir.
Anahtar Kelimeler: Riemann Yizeyleri, Konformal Doniisim,
Jordan Egrileri, Riemann-Roch Teoremi,
Meromorfik Fonksiyonu
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1. INTRODUCTION (GIRIS)
Let W Dbe an open Riemann surfaces of genus g. A Lebesque

measurable complex differential A=a(z)dX+b(z)dy on w is said to be
2 2
square integrable, 1f the integral IIQ&| +|b| }jxdy is finite. The
w

totality of square integrable complex differentials on W forms a real
Hilbert space AZA(W) with the usual inner product defined by

(are) = Re( . 2y) = Re [[ 2, n 7, = Re [[ (a,a, +b,D, Jay

where /lj:aj(z)dx+bj(z)dy, (j=1, 2) for a local parameter Z=X+lIy.

We will denote the complex conjugate of A by A and the star conjugate
differential of A by l* .
A, A

square integrable differentials on W with some restricted properties.

nse and /1e0 stand for the real Hilbert spaces of complex

/1c is the real Hilbert space of complex square integrable closed

differentials on W.
We now give a Lemma that we often use in this paper.
e TLemma 1.1. (Yardimci Teorem 1.1.)
Let G be a canonical regular region on W and & (W)={Aj,Bj }?—1 be
a canonical homology basis on W modulo dividing cycles such that

= N G forms a canonical homology basis on G modulooG . Suppose ﬂl

and /12 are closed C1 - differentials on G and /11 is semiexact, then
aidy)e =—Re [([ ) + Y Re( [ 4[4, = [ 4 [ 2;)
oG i A; B B A

where z stands for the sum over all Aj, Bj contained in G (cf. [1-
j
47) .

(The meaning of the .[/11 is the following: We cut G alongAj, Bj
to make it a planar surface Go. Since ﬂl is semiexact, there exists a
C2 - function f on Go such that df :ﬂl and consider the integral J.ﬂ.l

on aGO ).

e Definition 1.1. (Tanim 1.1.)
A closed subspace A, of A (W) is called behavior space if it
satisfies the following conditions.

- *J_
(1) Ay =14, , where Aé is the orthogonal complement in A,
of A, .
(ii) For eachﬂe/lo, '[/1=O, for j=1,2,...,g.
by
]
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It is now an easy matter to verify that A0={ﬂ€/lh Zﬂe/lo} is
also a behavior space if /10 is a behavior space.

e Definition 1.2. (Tanim 1.2.)

A meromorphic differential A on W will be said to have A,-

behavior if there exists a neighborhood U of the ideal boundary of W
on which it can be written as }b:ﬂo"'leo

where A,€/4, and
A €Ay N A .

A meromorphic function f on W is said to have Ao—behavior if df
has A,-behavior.

e Definition 1.3. (Tanim 1.3.)

Two behavior spaces /lt and Ag are called dual to each other if
and only if

(ﬂ,l,/’i;)ER for ﬂle/lt and A, E/l(z)
e TLemma 1.2. (Yardimci Teorem 1.2.)

The behavior spaces /A, and A, are dual to each other.
e Proof (ispat)

If A, is a behavior space, so is AO={/1€Ah ZZEAO}. Definition

1.3 can be easily verified, for A4 €/, and A4, € A,

(A 7)) = Re( 1y (4 )+ 1m(4y (4 )
—Re( 4,4, ) +i1m(4,,2)
— Re( 4,4, ) +iRe( A ,id))
- <11,I;_>+ i</11,i/f;>

for every ﬂ,lEAO andZZEAO. Since /10 is a behavior space, we
conclude that

(A,i2)=0

and o
(41,(4;) er

Which proves the behavior spaces /10 and /10 are dual to each

other Let W be an open Riemann surface of genus ( (0<g<OO) and 0 be

a finite divisor on W. We consider the following sets which evidently
from linear spaces over R.
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(i) £ is a single valued meromorphic function on W
S(ng,0 " )=1F: (ii) df has Ny —behavior

(1ii) The divisor of f is multiple of ot

(1)A is a meromorphic differential on W
D(D, O)=1A: (ii)A has Aj —behavior (5]

(1ii) The divisor of A is multiple of 0

e Theorem 1.1. (Teorem 1.1.)

(Riemann-Roch) Suppose that /lt and Ag—behavior is dual to each
other.
Let0 be a finite divisor on W. Then

dimS( A, 0" )=dimD(A;,0)+2(degd—g+1) [4-6]

2. REASERCH SIGNIFICANCE (CALISMANIN CNEMi)

For years, on the conformal mappings of compact finite Riemann
surfaces bounded by finitely many analytic Jordan curves have been
studied. In this study, it is studied on a new type of these conformal
mappings.

3. PART (3.BOLUM)

Let W be the interior a finite Riemann surface W of genus g

h
with h boundary components. Suppose that 8W=U,Bk, ,Bk being a
k=1

contour. LetE={Aj,Bj}?_l be a canonical homology basis of W modulo

the border. /ﬁ(W) stands for the closed differentials on the border.

We define

(1)A is semiexact,i.e., jA:O for all B, (1<k<h)
By

DLW =SA €N (W): (ii).[)\:o for every 3=1,2,...,9
Ay
(1ii)A is real valued along B, (1<k<h),i.e.,a complex
differential A=a(z)dx+b(z)dy is said to be real valued
along B, 1f aal(z(t))x (t)+b(z(t))y' (t)eR for all te[0,1]
e Lemma 3.1. (Yardimci Teorem 3.1.)
Aa(W) is the orthogonal complement of I/Ll](W Y in A(W), that
is,
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A W) =ig (W)
e Proof (ispat)
First we shall show that AE(W)J_IAE(W)* Take ﬂqe/lt(W) and

ﬂe/\lq(\/\/) .Then by Lemma 1.1, we have

<Ay K >=Re(A, K ) ==Y Re [([ 2 i+ SRe| [2, [2- 2 [4
k=L py =1 Al Bj Bj 4Aj

h _ g — —
=Y Re[f A+>Rel [4,[2-[4,[2 (1)
k=1 Pk =1 Aj Bj Bj Aj

provided that df, = /”tq near S, (1<k<h) Because of the

semiexactness of /1q we can take functions fk seperately on each

boundary component. Since J‘/iq=0 andjlzo, the last term of equation
Aj Aj
(1) is zero.
From the definition of the IAz(W) the differential A 1is iR-
valued alongs S, (1<k<h), that is, Re(A) is =zero along fp, .
Similarly, we know that fk is real wvalued along ,Bk, the imaginary

part of fk is constand along ,Bk. Im( fk) is zero along ﬂk(lﬁkﬁh).
Hence

Rejfk/1= _[Re( f,).Re(A)+ j|m( f,).Im(1)=0

Pk Pk Pk

Since these properties are valid for all K,j(1<k<hl<j<g) 1t
follows that

<A, A >=0

Next we prove the converse of lemma. That 1is 1f it 1is
<ﬂq,/1* >=0 for each ﬂq EAE(V_V) then A is in the space i/lz(V_\/).

Now we can construct a semiexect Cl—differential
Ay :ﬂkojo(uko’cko’cko) 1<k, <h, 1<]j,<0 such that
0 J.Ao _ Uy, +Cyy s on,BkO
0, ong (k #k,)
[7=0 . Ja=c,
Ajo BJ'o
(i1)
A, =0 , for j=j,
A;.B;
where
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Uy, ECé(ﬂko )={all the real valued twice continuously
differentiable functions defined on :Bko }and Cko €R oero €iR and
Cio €C. (In the integral I/io is understood in the sense of Lemma 1.1)

Such a differantial is obtained by a standart method as follows:

Let G be a relatively compact ring domain containing Aj0 which

may be assumed to be an orientable analytic Jordan curve. For any

UkO ECé(ﬂko) and Cko’Cio we take a function F defined on GU /S such
that
U +Cr rl.b.d c_)f @ko
F=1C,,, on the right part of G
0, else where

We can extended F so as F belongs to CZ(W—AJ-O). If we set
ﬂ'o =dF , ﬂo is the desired differential.

Now suppose that <ﬂq,ﬂ* >=0 for all ﬂq EAE(W). By Lemma 1.1

ZRej(qu)LEg:Re [2 [2= (2[4 ~0 (2)
k B =1 A Bj Bj A

(0,1,0) and/quZ (O,i,O) as

In equation (2) we can take /lq=lk0jo koio

/1q we obtain that

Re [A=Re [i 2=0
Bkg Bkg
and hence

[a=0
Pk
which proves the semiexacness of A
In equation(2) setting /lq :ﬂ“koio(uko ,0,0) we conclude that
Re [u,4=0
ﬂko
. 2
This holds for all Uko ECG(ﬂko), and therefore we can conclude
that A is iR-valued along 'Bko .
In equation (2), finally we set /1q :AKOjO(O,O;L) and

/1q :ﬂkojO(O,O,i). Then it follows that

Re [1=Re ijZ =0

Ajo Ajg
Therefore, we have
[4=0

Ajo
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Since these results are valid for all K, and Jj, (1<k,<h,

1<j,<0) we can conclude that A€ i/lt(V_\/)

4. PART (4. BOLUM)
Now we take the space of the complex harmonic differentials

Ah(V_V) instead of At(V_V) and the subspace AO(V_V)CAh(V_V) instead of

AE(V_\/) By Defination 3.1 we have
A(W) = A (W) A4, (W)
and
A4y (W) = (i, (W) A4, (W)
Also, the subspaces AO(V_V) and IAO(V_V) are closed in A, . By

Lemma 3.1_we have_
Ay(W) =gy (W)™

(where A" is the orthogonal complement in A, ), and
Ay = A(W) @ iAW) .

e Theorem 4.1. (Teorem 4.1.)
Let W be the interior of finite Riemann surface of genus g.

Suppose that ﬁ = ﬂ(W ) , the border of W, consists of bordered of h
components ,31 p ,32 J s ,Bh . We shall use W to denote W Uﬁ(W) . Then
there exists a meromorphic function fon W such that

(i) f maps each B, (1<k<h) to a closed interval on the real
axis.

(i1) f maps some of g-+1 preassigned points on W to the point
at infinity.

(1i1i) f(VV), the image of W wunder f, is at most (g-+1)—
sheeted over the extended complex plane.

e Proof (ispat)
The subspace AO(W) satisfies all the conditions in Definition
1.1. Therefore AO(W) is a behavior space. Hence by Lemma 1.2 we know

that Ay(W) andA(W) define dual behaviors with respect to R.
Riemann-Roch theorem is now applicable for these boundary behaviors
and we know that there exists a non-constant meromorphic function f

with Ay(W)- behavior possible(g+1) points P, (0<r<g) on W.
Indeed, Theorem 1.1 gives the following result

dim S(A,(W ),67) = dim D(A,(W ),8)+2(deg 5 — g +1)

>2(dego—g+1)
1t we set 5=PyP..P, then degS=g+1 and dimS(A(W)5")>2.
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Therefore there exists a non-constant meromorphic function f
such that the function f has /%(VV)— behavior and so Of is real-
valued along/?k, that 1is Hn(f) is constant on /3k. Thus by using of

the argument principle in [7], we conclude that f(VV), the image of

W under f, is at most (g-+l)—sheeted, over the extended complex
plane.

Remarks (1) Instead of Ay(W) we take the space A of the

hm

square integrable semiexact complex differentials on W whose the real
part 1s harmonic measure. Thus these are canonical semiexact

differentials in equation (1), provided that the genus of W is zero.
Also the function f mentioned in Theorem 4.1 belongs to the class ERO

equation (1).

5. CONCLUSION (SONUC)

In Baskan’s works [4 and 5], we take 44B—behavior space instead

of/%(VV). Generalization of Theorem 3 in Shiba’s work [2] can be

obtained by using generalized divisors. Theorem 3.1 can also be
considered a generalization of Theorem 2 in Shiba’s work [2].
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