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ON JOINT DISTRIBUTIONS OF ORDER STATISTICS FROM NONIDENTICALLY 

DISTRIBUTED DISCRETE VARIABLES  

 

  ABSTRACT 

  In this study, the joint distributions of order statistics 

arising from innid discrete random variables are expressed in the form 

of an integral by using permanent. Then, the results related to pf and 

df distributions are given.  

 Keywords: Order Statistics, Discrete Random Variable,  

                Probability Function, Distribution Function, Permanent 

 

 1. INTRODUCTION  

 Several identities and recurrence relations for probability 

density function (pdf) and distribution function (df) of order 

statistics of independent and identically distributed (iid) random 

variables were established by numerous authors including Arnold et al. 

[1], Balasubramanian and Beg [4], David [14], and Reiss [21]. 

Furthermore, Arnold et al. [1], David [14], Gan and Bain [15], and 

Khatri [18] obtained the probability function (pf) and df of order 

statistics of iid random variables from a discrete parent. 

Balakrishnan [2] showed that several relations and identities that 

have been derived for order statistics from continuous distributions 

also hold for the discrete case. Nagaraja [19] explored the behavior 

of higher order conditional probabilities of order statistics in a 

attempt to understand the structure of discrete order statistics. 

Nagaraja [20] considered some results on order statistics of a random 

sample taken from a discrete population. Corley [12] defined a 

multivariate generalization of classical order statistics for random 

samples from a continuous multivariate distribution. Expressions for 

generalized joint densities of order statistics of iid random 

variables in terms of Radon-Nikodym derivatives with respect to 

product measures based on df were derived by Goldie and Maller [16]. 

Guilbaud [17] expressed the probability of the functions of 

independent but not necessarily identically distributed (innid) random 

vectors as a linear combination of probabilities of the functions of 

iid random vectors and thus also for order statistics of random 

variables. 

 Recurrence relationships among the distribution functions of 

order statistics arising from innid random variables were obtained by 

Cao and West [10]. In addition, Vaughan and Venables [22] derived the 

joint pdf and marginal pdf of order statistics of innid random 

variables by means of permanents. Balakrishnan [3], and Bapat and Beg 

[8] obtained the joint pdf and df of order statistics of innid random 

variables by means of permanents. Using multinomial arguments, the pdf 

of 1: nrX  (1  r n+1) was obtained by Childs and Balakrishnan [11] by 
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adding another independent random variable to the original n variables 

nXXX ,...,, 21 . Also, Balasubramanian, et al., [7] established the 

identities satisfied by distributions of order statistics from non-

independent non-identical variables through operator methods based on 

the difference and differential operators. In a paper published in 

1991, Beg [9] obtained several recurrence relations and identities for 

product moments of order statistics of innid random variables using 

permanents. Recently, Cramer et al. [13] derived the expressions for 

the distribution and density functions by Ryser’s method and the 

distribution of maxima and minima based on permanents. In the first of 

two papers, Balasubramanian, et al., [5] obtained the distribution of 

single order statistic in terms of distribution functions of the 

minimum and maximum order statistics of some subsets of  },...,,{ 21 nXXX  

where iX ’s are innid random variables. Later, Balasubramanian et al. 

[6] generalized their previous results [5] to the case of the joint 

distribution function of several order statistics. 

 

 2. RESEARCH SIGNIFICANCE 

 In general, the distribution theory for order statistics is 

complex when the parent distribution is discrete. In this study, the 

joint distributions of p order statistics of innid discrete random 

variables are expressed in form of an integral. As far as we know, 

these approaches have not been considered in the framework of order 

statistics from innid discrete random variables. 

 From now on, the subscripts and superscripts are defined in the 

first place in which they are used and these definitions will be valid 

unless they are redefined. 

 If ,...a,a 21 are defined as column vectors, then the matrix 

obtained by taking 1m  copies of 1a , 2m  copies of 2a ,… can be denoted 

as [

1

1a
m

 

2

2a
m

 …] and perA denotes the permanent of a square matrix A, 

which is defined as similar to determinants except that all terms in 

the expansion have a positive sign. 

 Let nXXX ,...,, 21  be innid discrete random variables and 

nnnn XXX ::2:1 ...   be the order statistics obtained by arranging the n 

s'iX  in increasing order of magnitude. Let iF  and if  be df and pf of 

iX  (i =1, 2,…, n), respectively.  

 The df and pf  of nrnrnr p
XXX ::: ,...,,
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, 1...0 1210   nrrrrr pp  (p 
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expressions below, respectively    0...,2,1,0 0  zxi . 

 

3. THEOREMS FOR DISTRIBUTION AND PROBABILITY FUNCTIONS  

 In this section, the theorems related to pf and df of 

 will be given. We will now express the following nrnrnr p
XXX ::: ,...,,

21
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theorem for the joint pf of p order statistics of innid discrete 

random variables. 

 

Theorem 3.1. 
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 Here, 


n  is the cardinality of  . /.)A[   is the matrix obtained 

from A by taking rows whose indices are in  . 

 Proof. It can be written 
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We will now express the following theorem to obtain the joint df 

of p order statistics of innid discrete random variables. 
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 4. RESULTS FOR DISTRIBUTION AND PROBABILITY FUNCTIONS  

 In this section, the results related to pf and df of 

nrnrnr p
XXX ::: ,...,,
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 will be given. We will express the following result for 

pf of the rth order statistic of innid discrete random variables. 
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 Result 4.1.  
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In Result 4.2 and Result 4.3, the pf of minimum and maximum 

order statistics of innid discrete random variables are given, 

respectively. 
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Proof. In (10), if nr 1 , (12) is obtained.  

In the following result, we will give the joint pf of 
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where  ...  is to be carried out over the region: 
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Proof. In (1), if 11 r , 22 r ,…, prp  and  ...  instead of  ,  (13) 

is obtained. We will now give three results for the df of single order 

statistic of innid discrete random variables. 
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Proof. In (14), if 11 r , (15) is obtained.  
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Proof. In (14), if nr 1 , (16) is obtained.  

In the following result, we will give the joint df of 
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Proof. In (9), if 11 r , 22 r ,…, prp  , (17) is obtained.  
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