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A REMARK ON L2 DISTANCE FUNCTION AND NON-IDENTIFIABILITY PROBLEM OF 

FINITE MIXTURE DISTRIBUTION MODELS IN MODEL-BASED CLASSIFICATION 

  

 ABSTRACT 

 Finite mixture models provide flexible method of modeling data 

obtained from population consisting of finite number of homogeneous 

subpopulations. One of the main areas in which the finite mixture 

model structures is practically used in statistics is model based 

classification. However, the result of non identifiability problem 

arising from the structure of the finite mixture models may cause 

unreliable results on classification. In this paper we compare the 

probability density functions (𝑝𝑑𝑓𝑠) of the finite mixture distribution 
models for two different populations by L2 distance. We propose the 

componentwise L2 distance function to compare the 𝑝𝑑𝑓𝑠 of finite 

mixture distribution models for two different populations in the 

presence of non identifiability problem. Besides, a condition is 

proposed to control whether the L2 distance function gives similar 

results with the componentwise L2 distance function to compare the 𝑝𝑑𝑓𝑠 
of finite mixture distribution models for two different populations.  

Keywords: Finite Mixture Distribution, L2 Distance Function,  

          Model Based Classification, Mixture Model, 

          Non-identifiability 

 

1. INTRODUCTION 

 Finite mixture models have continued to receive increasing 

attention recently. Major application areas of finite mixture models 

are economics, financial, medicine, biology, genetics and social 

sciences. In addition of its importance in applications, finite 

mixture models constitute an efficient and challenging area of 

statistical research. It has widely applied to classification and 

clustering. Classification is the process of assigning group 

membership labels to unlabeled observation [1]. McNicholas has pointed 

out that there are three types of classifications based on the 

supervision level; supervised, semi-supervised, and unsupervised [1]. 

Unsupervised classification is known as clustering and no observations 

are a priori labelled, and the other two species have some 

observations that are priori labeled to use this knowledge to infer 

labels for the unlabelled observations. Semi-supervised classification 

process which is described by the use of a statistical model is termed 

“model-based classification” in the literature. One of the application 
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areas of the model-based classification is the comparison of two 

different populations which formed by the finite mixture models.  

 The probability density functions of the mixture distribution 

models for two different populations can be compared by using distance 

functions between them in model-based classification applications. In 

many cases the component densities of the finite mixture distribution 

models for two different populations are in irregular order and they 

act as permutation functions. This problem is known as non-

identifiability problem of finite mixture distribution models. The 

problem of non-identifiability is a general term that needs to be 

configured depending on the context. The identifiability of a 

parameter is explained by the fact that the corresponding parameters 

are equal if the any two members of the family of distributions are 

equal. However, this may not always be the case. When one- dimensional 

normally distributed model is considered, it is known that variances 

with opposite signs produce the similar normal probability density 

functions which exemplifies the non-identifiability of parameter. In 

other words, estimation of parameters based on observations meaningful 

when parameter is identifiable [2]. In addition, the definition of 

identifiability for finite mixture models slightly different and 

explained in the following section. Erol suggested to take into 

account non-identifiability problem of finite mixture distribution 

models [3]. For this, he proposed to componentwise distance function 

to compare the 𝑝𝑑𝑓𝑠  of the finite mixture distribution models for two 
different populations if the component densities are permutation 

functions. In the case of component densities are in irregular order 

and there is a problem in the comparison of 𝑝𝑑𝑓𝑠 of the finite mixture 
distribution models for two different populations. Erol suggested to 

compare by using component Hellinger distance function between them [3 

and 4].  

 

2. RESEARCH SIGNIFICANCE  

 We suggest to use 𝐿2 distance and component wise 𝐿2 distance to 

compare 𝑝𝑑𝑓𝑠 of the finite mixture distribution models for two 

different populations. We give the definition of identifiability 

problem of mixture models in detail and the condition theorem by using 

𝐿2 distance with the proof in chapter 3, we summarize our results in 

chapter 4. 

 

3. MATERIAL AND METHOD 

 The formal definition of finite mixture model which is mentioned 

in the introduction part is given by Titterington et al. as follows 

[5]. 

 Definition 1: The distribution of a random variable 𝑋 with 

density function of the form 

𝑓(𝑥, 𝜽) = ∑ 𝑤𝑗𝑓(𝑥, 𝜃𝑗)𝑘
𝑗=1                                             (1) 

is named a finite mixture distribution with 𝑘 components and 𝜽 =
(𝑤𝟏, ⋯ , 𝑤𝒌, 𝜃𝟏, ⋯ , 𝜃𝒌) parameter vector. Here 𝑓(𝑥, 𝜃𝑗), 𝑗 = 1, … , 𝑘 denote 

the component densities of mixture with parameter 𝜃𝑗 and mixing 

weights 𝑤1, … , 𝑤𝑘 are positive and sum to unity. Component 

densities 𝑓(𝑥, 𝜃𝑗), 𝑗 = 1, … , 𝑘 are not necessary to come from similar 
distributions. However, we assume that component densities are 

Gaussian. 

 Definition 2: A random variable 𝑋 with density function  

𝑓(𝑥, 𝜃) =
1

√2𝜋𝜎
exp (−

(𝑥−𝜇)2

2𝜎2 )                                        

where 𝜃 = (𝜇, 𝜎2), is said to be normal or Gaussian distributed 
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with parameters 𝜇 and 𝜎2. Recommended common methods for 

estimating model parameters in a finite mixture model is to 

apply Expectation Maximization algorithm [6]. The first and 

proper theoretical study of the EM algorithm proposed by 

Dempster et al., [6]. EM algorithm is a method based on 

iteration, which provides numerical approach to the maximum 

likelihood estimation of the parameters in mixture models with 

the help of hidden variables. Studies shown that the EM 

algorithm is not only slow in convergence but also unstable 

against outliers [7]. To overcome the limitations of EM 

algorithm, minimum distance estimation method based on 

integrated squared error criterion, termed L2E, has been 

proposed as a more robust method compared to the EM algorithm by 

Scott [8]. In addition to parameter estimation of finite mixture 

models, a study on finding the number of mixture components 

proposed by Thayasivam [9]. Fitting a mixture distribution to 

the data from given observations 𝑥1, … , 𝑥𝑛, requires identifiable 

parameter vector 𝜽. This is because unique characterization 

exists for any mixture model when the parameter vector 𝜽 is 

identifiable.  

In general, a parametric family of density functions 𝑓(𝑥, 𝜃) is 
identifiable if distinct values of the parameter 𝜃 determine 

distinct members of the family. That is,  

𝑓(𝑥, 𝜃) = 𝑓(𝑥, 𝜃∗)                                                 (2) 
if and only if 𝜃 = 𝜃∗ [2]. Identifiability definition of finite 
mixture models is given slightly different. To see why this is 

necessary, suppose that 𝑓(𝑥, 𝜽) has component densities 𝑓(𝑥, 𝜃𝑗) and 

𝑓(𝑥, 𝜃𝑗
∗), that belong to the same parametric family. Then the 

equation (2) will still hold when the component labels 𝑗 and 𝑗∗ 

are interchanged in 𝜽. Although this class of mixtures may be 

identifiable, 𝜽 is not. Hence, identifiability of mixtures can 
be explained as follows. 

 Definition 3: Let 𝑓(𝑥, 𝜽) = ∑ 𝑤𝑗𝑓(𝑥, 𝜃𝑗)𝑘
𝑗=1  and 𝑓(𝑥, 𝜽∗) = ∑ 𝑤𝑗

∗𝑓(𝑥, 𝜃𝑗
∗)𝑘∗

𝑗=1  be 
any two members of a parametric family of mixture densities. 

This class of finite mixtures is said to be identifiable for 𝜽 
if 𝑓(𝑥, 𝜽) = 𝑓(𝑥, 𝜽∗) If and only if 𝑘 = 𝑘∗ and the component labels 

can be permuted so that 𝑤𝑗 = 𝑤𝑗
∗ and 𝑓(𝑥, 𝜃𝑗) = 𝑓(𝑥, 𝜃𝑗

∗). Interchanging 

of component labels cause non -identifiability problem of 𝜽. It 
is proposed to add appropriate constraints on 𝜽 to solve this 
problem. Aitkin and Rubin suggested to sort the component labels 

from smallest to largest as 𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝑘 and ignored this order 

in the parameter estimation process by MLE [10]. McLachlan and 

Peel  suggested to consider similar idea on the component labels 

when the component distributions are univariate normal [2]. Some 

other detailed definitions and recommendations about 

identifiability concept are given by Teicher, Yakowitz and 

Spragins, Kadane, Akdağ, Toher et al., Mclachlan and Basford, 

Fraley et al., Erol and Akdeniz, Dean et al., Wehrens et al., 

Yeung et al., Servi, Titterington et al. [11, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 22 and 5]. Non-identifiability problem 

needs to be considered when comparing the populations 

represented by finite mixture models. It has been suggested in 

the literature that 𝑝𝑑𝑓𝑠 of the finite mixture distribution 

models are arranged in ascending order according to their means. 

However, such sorting can take place differently in different 

populations. Erol explained this situation by the popular 
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example which includes two different populations each consisting 

of boys and girls and assuming each population has the mixture 

of two univariate normal distributions w.r.t the variate height 

in centimeter [3 and 23]. Systolic Blood Pressure (The highest 

pressure when the heart beats and pushes the blood round the 

body) of female and male patients from different populations 

could be different example for the similar purpose of 

comparison. As Erol pointed out there are two type of scenarios 

we encounter when we compare the pdfs of the finite mixture 

models for two different populations by distance function [3]. 

We generated populations from normally distributed two-component 

finite mixture models to illustrate non-identifiability problem. 

 
Figure 1. Finite mixture distribution models and their components for 

two populations 

  

 Corresponding component densities of the mixture distribution 

models for two different populations are in the same order with 

respect to their means, as shown in Figure 1. Therefore, there is no 

need to draw attention to the non-identifiability problem. However, 

for the second case non-identifiability problem is clearly observed in 

the Figure 2. 

 
 

Figure 2. Finite mixture distribution models and their components for 

two populations 

 

 Component densities of mixture distribution models are not in 

the same order with respect to their means for population 1 and 
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population 2, and they act as permutation functions, as shown in 

Figure 2. Erol suggested to componentwise Hellinger distance function 

to compare the populations with irregular component densities. 

Besides, he suggested a condition under which the value of Hellinger 

distance function between the 𝑝𝑑𝑓𝑠 of the finite mixture distribution 
models is equal to the value of componentwise Hellinger distance 

function between 𝑝𝑑𝑓𝑠 of the finite mixture distribution models for two 
different populations [3]. 

 

 4. FINDINGS AND DISCUSSIONS 

 In our study we will restrict our attention to the 𝐿2 distance 

between 𝑝𝑑𝑓𝑠 of the finite mixture distribution models for two 

different populations. The details of mixture models for two 

populations from univariate normal distribution with two components 

and 𝐿2 distance will be given first, then the definitions and 

conditions defined by Hellinger distance will be adapted to the 𝐿2 

distance. Let the mixture model for the 𝑖 − 𝑡ℎ population with the 

mixture of two univariate normal distributions is given as follows; 

𝑓𝑖(𝑥; 𝜇𝑖1, 𝜇𝑖2, 𝜎𝑖1, 𝜎𝑖2, 𝑝𝑖1) = ∑ 𝑤𝑖𝑗𝑓𝑖𝑗(𝑥; 𝜇𝑖𝑗 , 𝜎𝑖𝑗)

2

𝑗=1

 

−∞ < 𝑥 < +∞, −∞ < 𝜇𝑖𝑗 < +∞, 𝜎𝑖𝑗 > 0                                    (3) 
 

 Here 𝑖 refers to population number and 𝑗  refers to each 

component of mixtures. If the component densities are normally 

distributed densities become 

𝑓𝑖𝑗(𝑥; 𝜇𝑖𝑗 , 𝜎𝑖𝑗) =
1

√2𝜋𝜎𝑖𝑗
𝑒𝑥𝑝 {

−1

2
(

𝑥−𝜇𝑖𝑗

𝜎𝑖𝑗
)2}                 

−∞ < 𝑥 < +∞, −∞ < 𝜇𝑖𝑗 < +∞, 𝜎𝑖𝑗 > 0                               (4)                                    

 Where 𝜇𝑖𝑗 and 𝜎𝑖𝑗
2 are the 𝑗 − 𝑡ℎ  component mean and the variance of 

the 𝑖 − 𝑡ℎ population respectively. 𝑤𝑖𝑗’s are mixture proportions such 

that 

 ∑ 𝑤𝑖𝑗 = 12
𝑗=1   for 𝑖 = 1,2 [3].  

 If the corresponding 𝑝𝑑𝑓𝑠 of finite mixture distribution models 
for two populations can be sorted based on their means such that; 

 𝜇11 < 𝜇12 and 𝜇21 < 𝜇22  (1) 

 There is no problem for comparing  𝑝𝑑𝑓𝑠 of finite mixture 

distribution models for two different populations. By keeping the same 

notations with the Erol’s paper the 𝑝𝑑𝑓𝑠 of finite mixture distribution 
models for two populations 𝑓1(𝑥; 𝜇11, 𝜇12, 𝜎11, 𝜎12, 𝑝11) (𝑓1(𝑥)𝑓𝑜𝑟 𝑠ℎ𝑜𝑟𝑡) and 

𝑓2(𝑥; 𝜇11, 𝜇12, 𝜎11, 𝜎12, 𝑝11) ( 𝑓2(𝑥)𝑓𝑜𝑟 𝑠ℎ𝑜𝑟𝑡) can be compared by 𝐿2 distance between 

them. 𝐿2 distance between 𝑓1(𝑥) and 𝑓2(𝑥) is given as follows [3]; 
 

𝐿2𝑓1,𝑓2
= ∫ (𝑓1(𝑥) − 𝑓2(𝑥))2𝑑𝑥

𝑅

 

 

(2) 

 If the corresponding 𝑝𝑑𝑓𝑠 of finite mixture distribution models 
for two populations are not in the same order w.r.t their means such 

that 

 𝜇11 < 𝜇12 and 𝜇21 > 𝜇22 or 𝜇11 > 𝜇12 and 𝜇21 < 𝜇22 (3) 

 Then the component densities are in irregular order and the 

corresponding 𝑝𝑑𝑓𝑠 of finite mixture distribution models act as 

permutation functions. In the case of component densities are in 

irregular order and there is a problem in the comparison of 𝑝𝑑𝑓𝑠 of the 
finite mixture distribution models for two different populations Erol 

suggested to compare by using componentwise Hellinger distance 

function between them [3]. We suggest to use 𝐿2 distance and 
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componentwise 𝐿2 distance to compare 𝑝𝑑𝑓𝑠 of the finite mixture 

distribution models for two different populations. 

 

𝐶𝐿2(𝑓1,𝑓2) = ∑ ∫ (𝑤1𝑗𝑓1𝑗(𝑥) − 𝑤2𝑗𝑓2𝑗(𝑥))2𝑑𝑥
𝑅

2

𝑗=1

 

𝑅 = {𝑥| − ∞ < 𝑥 < +∞} 

(4) 

Considering the condition given by Hellinger’s distance function, we 

give following theorem that shows the 𝐿2 distance to compare 𝑝𝑑𝑓𝑠 of 
the finite mixture distribution models and component wise 𝐿2 distance 

to compare 𝑝𝑑𝑓𝑠 of the finite mixture distribution models for two 

different populations can be equal. 

 Theorem 4.1. 𝐿2 distance function value of the 𝑝𝑑𝑓𝑠 of the finite 
mixture distribution models for two different populations is equal to 

the component wise 𝐿2 distance function value of the 𝑝𝑑𝑓𝑠 of the finite 
mixture distribution models if and only if the equality  

 
∫ (𝑤11𝑓11 − 𝑤21𝑓21)(𝑤22𝑓22 − 𝑤12𝑓12) = 0

𝑅

 

 

(9) 

holds. 

 Proof:  We give the proof only for if part. 𝐿2 distance between 

the 𝑝𝑑𝑓𝑠 of the finite mixture distribution models 𝑓1(𝑥) and 𝑓2(𝑥) given 
by 

 
𝐿2(𝑓1,𝑓2) = ∫ (𝑓1(𝑥) − 𝑓2(𝑥))2𝑑𝑥

𝑅

 

 

(10) 

 the equation (10) can be written as  

 
𝐿2(𝑓1,𝑓2) = ∫ 𝑓1(𝑥)2

𝑅

− 2𝑓1(𝑥)𝑓2(𝑥) + 𝑓2(𝑥)2 
(11) 

 

 In terms of component densities as 

 
𝐿2(𝑓1,𝑓2) = ∫ (𝑤11𝑓11(𝑥) + 𝑤12𝑓12(𝑥))2𝑑𝑥

𝑅

+ ∫ (𝑤21𝑓21(𝑥) + 𝑤22𝑓22(𝑥))2𝑑𝑥 − 2 ∫ 𝑓1(𝑥)𝑓2(𝑥)𝑑𝑥
𝑅𝑅

 

(12) 

 

 We add and substract the terms 2𝑤11𝑓11𝑝21𝑓21 and 2𝑤12𝑓12𝑝22𝑓22  in the 

integral to the equation (12) and we obtain the following equation  
 

𝐿2(𝑓1,𝑓2) = ∫ ((𝑤11𝑓11)2 +
𝑅

(𝑤21𝑓21)2)𝑑𝑥 
(13) 

−2 ∫ (𝑤11𝑓11𝑤21𝑓21)𝑑𝑥 +
𝑅

∫ ((𝑤12𝑓12)2 +
𝑅

(𝑤22𝑓22)2)𝑑𝑥 

−2 ∫ (𝑤12𝑓12𝑤22𝑓22)𝑑𝑥 + 2 ∫ (𝑤11𝑓11𝑤21𝑓21) +
𝑅

2 ∫ (𝑤12𝑓12𝑤22𝑓22)𝑑𝑥
𝑅𝑅

 

+2 ∫ (𝑤11𝑓11𝑤12𝑓12)𝑑𝑥 + 2 ∫ (𝑤21𝑓21𝑤22𝑓22)𝑑𝑥 − 2 ∫ 𝑓1(𝑥)𝑓2(𝑥)𝑑𝑥
𝑅𝑅𝑅

 

 The first two terms in equation (13) are equal to the 

componentwise 𝐿2 distance function between the component densities of 

the  𝑝𝑑𝑓𝑠 of the finite mixture distribution models for two different 
populations. Therefore, we have 

 

𝐿2(𝑓1,𝑓2) = ∑ ∫ (𝑤1𝑗𝑓1𝑗 − 𝑤2𝑗𝑓2𝑗)2𝑑𝑥
𝑅

2

𝑗=1

 

(14) 

   

 +2 ∫ (𝑤11𝑓11𝑤21𝑓21) +
𝑅

2 ∫ (𝑤12𝑓12𝑤22𝑓22)𝑑𝑥
𝑅

 



 

 

 
 

 

 

 

145 

 

Öner, Y., Kabakçı, F., Öner, B., and Gürcan, N., 

 

Technological Applied Sciences (NWSATAS), 2A0176, 2019; 14(4):139-146. 

 

+2 ∫ (𝑤11𝑓11𝑤12𝑓12)𝑑𝑥 + 2 ∫ (𝑤21𝑓21𝑤22𝑓22)𝑑𝑥 − 2 ∫ 𝑓1(𝑥)𝑓2(𝑥)𝑑𝑥
𝑅𝑅𝑅

 

 or 

 
𝐿2(𝑓1,𝑓2) = 𝐶𝐿2(𝑓1,𝑓2) + 2 ∫ (𝑤11𝑓11𝑝21𝑓21) +

𝑅

2 ∫ (𝑤12𝑓12𝑤22𝑓22)𝑑𝑥
𝑅

 
(15) 

+2 ∫ (𝑤11𝑓11𝑤12𝑓12)𝑑𝑥 + 2 ∫ (𝑤21𝑓21𝑤22𝑓22)𝑑𝑥 − 2 ∫ 𝑓1(𝑥)𝑓2(𝑥)𝑑𝑥
𝑅𝑅𝑅

 

 By expanding the last term in equation (15) we obtain the 

following equation 

 
𝐿2(𝑓1,𝑓2) = 𝐶𝐿2(𝑓1,𝑓2) − 2 ∫ (𝑤11𝑓11 − 𝑤21𝑓21)(𝑤22𝑓22 − 𝑤12𝑓12)

𝑅

 
(16) 

 

The value of 𝐿2 distance function between the  𝑝𝑑𝑓𝑠 of the finite 

mixture distribution models is equal to the value of componentwise 𝐿2 

distance function between of the  𝑝𝑑𝑓𝑠 of the finite mixture 

distribution models for two different populations if the condition in 

equation  (9) holds.  
 

5. CONCLUSIONS AND RECOMMENDATIONS 

 In this article, we noted that 𝑝𝑑𝑓𝑠 of the finite mixture 

distribution models for two different populations may have irregular 

order. This is known as non-identifiability problem of finite mixture 

distribution models. In this case, comparing these two populations may 

not yield reliable results. Therefore, this problem must be considered 

in the application areas of finite mixture models such as 

classification and clustering. The theorem we proposed here is a 

mechanism to check whether  𝑝𝑑𝑓𝑠 of the finite mixture distribution 
models for two different populations are in regular order or not by 

using the  𝐿2 distance function. In the presences of non- 

identifiability problem, componentwise 𝐿2 distance function should be 

used instead of 𝐿2 distance function to compare 𝑝𝑑𝑓𝑠 of the finite 
mixture distribution models for two different populations. 
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