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CONTROL CHARTS FOR AUTOCORRELATED PROCESSES: A REVIEW 

 
ABSTRACT 
One of the primary tools used in statistical quality control is 

the control charts. The standard assumptions that are usually cited in 
justifying the use of control charts are that the data generated by 
the in control process are independent and identically distributed. 
However the independency assumption is not realistic in practice. Data 
sets collected from industrial processes may have correlation among 
adjacent observations (autocorrelation). In this case control charts 
are modified to monitor the autocorrelated process observation. Many 
scientists made contributions in the area of control charts for 
autocorrelated data. In the present paper, a comprehensive overview 
for control charts for autocorrelated data is given by discussing both 
theoretical developments and practical experiences, and identifying 
research trends. Finally, historical progression in this field was 
emphasized and recommendations for future research are suggested. 

Keywords: Control Charts, Autocorrelation, Literature Review, 
          Residual Control Charts, Neural Network Based Control 
          Charts   
 

OTOKORELASYONLU GÖZLEMLER İÇİN KONTROL KARTLARI: LİTERATÜR TARAMA 
 

ÖZET 
İstatistiksel kalite kontrolde öncelikle kullanılan araçlardan 

biri kontrol kartlarıdır. Kontrol kartlarının kullanımında genellikle 
atfedilen standart varsayım, kontrol altındaki süreç tarafından 
üretilen verilerin bağımsız olduğu ve aynı dağılımdan geldiğidir. Ne 
var ki, bağımsızlık varsayımı uygulamada gerçekçi değildir. 
Endüstriyel süreçlerden toplanan veri setleri ardışık gözlemler arası 
korelasyona (otokorelasyon) sahip olabilir. Bu durumda kontrol 
kartları, otokorelasyonlu süreç gözlemlerini izlemek için modifiye 
edilirler. Pek çok bilim adamı otokorelasyonlu gözlemler için kontrol 
kartları alanına katkıda bulunmuştur. Bu çalışmada, otokorelasyonlu 
gözlemler için kontrol kartları için geniş bir literatür taramasına, 
hem teorik gelişmeleri hem de uygulamalı deneyimleri ve araştırma 
eğilimlerini göz önüne alarak, yer verilmiştir. Son olarak, bu 
alandaki tarihsel gelişim üzerinde durulmuş ve gelecek araştırmalar 
için tavsiyelerde bulunulmuştur. 

 Anahtar Kelimeler: Kontrol Kartları, Otokorelasyon, Literatür        
                    Taraması, Artık Terimler İçin Kontrol 
                    Kartları, Yapay Sinir Ağı Tabanlı Kontrol 
                    Kartları    
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   1. INTRODUCTION (GİRİŞ) 
Since the first control chart has been proposed by Shewhart in 

1931, lots of charts have been developed and then improved to use for 
different process data. In its basics form, a control chart compares 
process observations with a pair of control limits. The standard 
assumptions that are usually cited in justifying the use of control 
charts are that the data generated by the in control process are 
normally and independently distributed by mean of   and standard 
deviation of   [1]. However the independency assumption is not 
realistic in practice. The most frequently reported effect on control 
charts of violating such assumptions is the erroneous assignment of 
the control limits. Alwan & Roberts (1995) showed that about 85% of a 
sample of 235 control chart applications displayed incorrect control 
limits [2]. More than half of these displacements were due to 
violation of the independence assumption, that is, due to serial 
correlation in the data. However, many processes such as those found 
in refinery operations, smelting operations, wood product 
manufacturing, waste-water processing and the operation of nuclear 
reactors have been shown to have autocorrelated observations.  

When there is significant autocorrelation in a process, 
traditional control charts with independent and identically 
distributed (iid) assumption will be ineffective. In addition to 
various control charts developed for monitoring autocorrelated 
processes, three general approaches are recommended; (i) fit ARIMA 
model to data then apply traditional control charts such as Shewhart, 
CUSUM, EWMA to process residuals, (ii) monitor the autocorrelated 
observations by modifying the standard control limits to account for 
the autocorrelation (iii) eliminate the autocorrelation by using an 
engineering controller [1]. 

A variety of control charts are introduced for autocorrelated 
data. The purpose of this paper is to give a comprehensive survey of 
works on various control chart applications for autocorrelated 
processes. Through the following section the significance of this 
research and review studies on control charts are discussed. In 
section 3, a comprehensive review of control chart applications for 
autocorrelated processes are given. Finally, historical progression in 
this field was emphasized and recommendations for future researches 
are suggested in section 4. 

 
2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ) 
The purpose of this paper is to give a comprehensive review of 

works on various control chart applications for autocorrelated 
processes. When the literature reviewed the following review studies 
on control chart applications are considerable. Ho & Case reviewed 
literature for 1981-1991 and presented the studies on economic design 
of control charts [3]. Lowry & Montgomery (1995) presented a review of 
the literature on control charts for multivariate quality control 
(MQC), with a concentration on developments occurring since the mid-
1980s. Multivariate cumulative sum (MCUSUM) control procedures and a 
multivariate exponentially weighted moving average (MEWMA) control 
chart were reviewed and recommendations were made regarding their use 
[4]. DelCastillo & Hurwitz (1997) reviewed run to run control methods 
from a statistical and control engineering point of view [5]. 
Zorriassatine & Tannock (1998) reviewed the literature on application 
of Neural Networks (NNs) to the analysis of Shewhart's traditional 
statistical process control (SPC) charts [6]. Ganesan, Das, & 
Venkataraman (2004) reviewed the multiscale monitoring of both 
univariate and multivariate processes [7]. Jensen, Farmer, & Champ 
(2006) reviewed the literature that explicitly considers the effect of 
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parameter estimation on control chart properties [8]. Bersimis, 
Psarakis, & Panaretos (2007) reviewed multivariate extensions for all 
kinds of univariate control charts, such as multivariate Shewhart-type 
control charts, multivariate CUSUM control charts and multivariate 
EWMA control charts. In addition, they reviewed unique procedures for 
the construction of multivariate control charts, based on multivariate 
statistical techniques such as principal components analysis (PCA) and 
partial least squares (PLS). Also, they described the most significant 
methods for the interpretation of an out-of-control signal [9]. 
Koutras, Bersimis, & Maravelakis (2007) reviewed the well known 
Shewhart type control charts supplemented with additional rules based 
on the theory of runs and scans. The motivation for their article 
stems from the fact that during the last decades, the performance 
improvement of the Shewhart charts by exploiting runs rules has 
attracted continuous research interest [10]. Topalidou & Psarakis 
(2009) reviewed multinominal and multiattribute quality control charts 
[11].  

It is clearly observed that there is no presented study that 
reviews the recent literature on control charts for autocorrelated 
data. In this study, an attempt to review the research previously 
conducted on control charts for autocorrelated data is made in order 
to help the interested researchers and practitioners get informed 
about the references on the relevant research in this field, regarding 
the design, performance and applications of control charts for 
autocorrelated data. 
 

3. APPLICATION OF CONTROL CHARTS IN AUTOCORRELATED PROCESSES   
   (KONTROL KARTLARININ OTOKORELASYONLU SÜREÇLERDE UYGULANMASI) 
3.1. Residual Control Charts  
     (Artık Terimler için Kontrol   Kartları)   
A common approach to detect a possible process mean shift is to 

use residual control charts, also known as the special cause chart 
(SCC), which are constructed by applying traditional SPC charts (such 
as Shewhart, cumulative sum (CUSUM), exponentially weighted moving 
average (EWMA)) to the residuals from a time series model of the 
process data [12]. The basic idea in the SCC method is to transform 
the original autocorrelated data to a set of "residuals" and monitor 
the residuals. Shewhart charts proposed by Shewhart in 1931 and they 
are usually effective for detecting large shifts but ineffective for 
detecting small shifts (about 1.5 or less) in process parameters. To 
overcome this disadvantage two different control charts, cumulative 
sum (CUSUM) and exponentially weighted moving average (EWMA), are 
proposed [1]. The CUSUM chart was firstly introduced by Page in 1954. 
The basic purpose of a CUSUM chart is to track the distance between 
the actual data point and the grand mean. Then, by keeping a 
cumulative sum of these distances, a change in the process mean can be 
determined, as this sum will continue getting larger or smaller. The 
EWMA chart was proposed by Roberts in 1959. The EWMA is a statistic 
for monitoring the process that averages the data in a way that gives 
less and less weight to data as they are further removed in time. 
CUSUM and EWMA are appropriate for detecting small shifts, because 
they give smaller weight to the past data. However, they do not react 
to large shifts as quickly as the Shewhart chart. Yourstone & 
Montgomery (1989) studied on geometric moving average (GMA) and 
geometric moving range (GMR) control charts. The geometric moving 
range between successive pairs of residuals is used to track the 
dispersion of the process quality data in the real-time SPC algorithm 
[13]. The geometric moving range allows the user of the algorithm to 
alter the sensitivity of the moving range filter through adjustments 
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to the smoothing constant. Two years later, in 1991, they proposed two 
innovative control charts, the sample autocorrelation chart (SACC) and 
the group autocorrelation chart (GACC) which are shown to be 
particularly effective control schemes when used control chart for the 
residuals of the time series model of the real time process data [14]. 
These charts are based on the autocorrelation function of 
autocorrelated data. The SACC as well as the GACC detect shifts in the 
mean as well as shifts in the autocorrelative structure. The GACC 
chart detects the shift before the SACC since the GACC detects 
fluctuations over all lags of the sample autocorrelation. The SACC 
will signal shifts through a change in the pattern of the plots of the 
sample autocorrelation as well as through plots meeting or exceeding 
the control limits. The GACC will detect shifts that impact the sample 
autocorrelations as a group [14]. When compared with the previous 
methods, SACC is less sensitive in detecting mean and variance shifts 
but very competitive in detecting changes in the parameters of ARMA 
model [15]. 

Today, many industrial products are produced by several 
dependent process steps not just one step. However, conventional SPC 
techniques focus mostly on individual stages in a process and do not 
consider disseminating information throughout the multiple stages of 
the process. They are shown to be ineffective in analyzing multistage 
processes. A different approach to this problem is the cause-selecting 
chart (CSC), proposed by Zhang (1984). The CSC based on the output 
adjusted for the effect of the incoming quality shows promise for 
increasing the ability to analyze multistage processes [16].  

On the other hand, the traditional practice in using the control 
charts to monitor a process is to use a fixed sampling rate (FSR) 
which takes samples of fixed sample size (FSS) with a fixed sampling 
interval (FSI). In recent years, several modifications adopting the 
variable sampling interval (VSI), variable sample size (VSS) and 
variable sampling rate (VSR) or variable sampling interval and 
sampling size (VSSI) in the x  control chart have been suggested to 
improve traditional FSI policy and have been shown to give better 
performance than the conventional x  charts in the sense of quick 
response to process change in the quality control literature. The VSSI 
features are extended to CUSUM and EWMA charts. Zou, Wang, & Tsung 
(2008) [17] suggested using a variable sampling scheme at fixed times 
(VSIFT) to enhance the efficiency of the x  control chart for the 
autocorrelated data. Two charts are under consideration, that is, the 
VSIFT x  chart and variable sampling rate with sampling at fixed times 
VSRFT x  charts. These two charts are called x -VSFT charts.  

Traditional residual based charts, such as a Shewhart, CUSUM, or 
EWMA on the residuals, do not make use of the information contained in 
the dynamics of the fault signature. In contrast, methods such as the 
Cumulative Score (Cuscore) charts which are presented by Box & Ramirez 
(1992) or Generalized Likelihood Ratio Test (GLRT) do incorporate this 
information [18].  

Traditional control charts are intended to be used in high 
volume manufacturing. In a short run situation, there is not enough 
data available for the estimation purposes. In processes where the 
length of the production run is short, data to estimate the process 
parameters and control limits may not be available prior to the start 
of production, and because of the short run time, traditional methods 
for establishing control charts cannot be easily applied. Many 
sampling difficulties arise when applying standard control charts in 
low volume manufacturing horizon. Q charts have been proposed to 
address this problem by Quesenberry (1991) [19].  
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The basic idea in the SCC method is to transform the original, 
autocorrelated data to a set of "residuals" and monitor the residuals. 
The minimum mean squared error (MMSE) predictor used in the SCC chart 
is optimal for reducing the variance of the residuals but is not 
necessarily best for the purposes of process monitoring. Furthermore, 
the MMSE predictor is closely tied to a corresponding MMSE scheme in 
feedback control problems. Despite a huge literature on MMSE-based 
feedback control, the class of proportional integral derivative (PID) 
control schemes is more common in industry (see Box, Jenkins, & 
Reinsel, 1994; Astrom & Hagglund, 1995 refered from [20]). Jiang et 
al. (2002) use an analogous relationship between PID control and the 
corresponding PID predictor to propose a new class of procedures for 
process monitoring. As in SCC charts, they transform the 
autocorrelated data to a set of "residuals" by subtracting the PID 
predictor and monitoring the residuals [20]. 

When the literature is reviewed for 1997-2010 year range, it is 
clearly observed that the following studies are remarkable. Kramer & 
Schmid (1997) [21] discussed the application of the Shewhart chart to 
residuals of AR(1) process and in the same year Reynolds & Lu (1997) 
[22] compared performances of two different types of EWMA control 
charts for residuals of AR(1) process. Yang & Makis (1997) [23] 
compared the performances of Shewhart, CUSUM, EWMA charts for the 
residuals of AR(1) process. Zhang (1997) [24] remarked that the 
detection capability of an x residual chart was poor for small mean 
shifts compared to the traditional x chart, EWMA, and CUSUM charts for 
AR(2) process. Two years later Reynolds & Lu (1999) [25] compared the 
performances of EWMA control chart based on the residuals from the 
forecast values of AR(1) process and EWMA control chart based on the 
original observations. Luceno & Box (2000) [26] studied the One-sided 
CUSUM chart. Rao, Disney & Pignatiello (2001) [27] focused on the 
integral equation approach for computing the ARL for CUSUM control 
charts for AR(1) process. They studied the ARL performance versus 
length of the sampling interval between consecutive observations for 
residuals of AR(1) process. Jiang et al. (2002) [20] proposed 
proportional integral derivative (PID) charts for residuals of 
ARMA(1,1) process. Kacker & Zhang (2002) [28] studied the run length 
performance of Shewhart x  for residuals of IMA( , ) processes. Shu, 
Apley, & Tsung (2002) [29] proposed a CUSUM-triggered Cuscore chart to 
reduce the mismatch between the detector and fault signature. A 
variation to the CUSUM-triggered Cuscore chart that uses a GLRT to 
estimate the mean shift time of occurrence is also discussed. They 
used ARMA(1,1) process to test the performance of proposed chart. It 
is shown that the triggered Cuscore chart performs better than the 
standard Cuscore chart and the residual-based CUSUM chart. Ben-Gal 
Morag, & Shmilovici (2003) [30] presented context-based SPC (CSPC) 
methodology for state-dependent discrete-valued data generated by a 
finite memory source and tested the performance of this new modified 
chart for AR(1), AR(2), MA(1) processes. Snoussi, Ghourabi, & Limam 
(2005) [31] studied on residuals for short run autocorrelated data of 
autocorrelated process. They compared the performances of Shewhart x , 
CUSUM, and EWMA control charts for residuals of AR(1) process. They 
also compared the performances of CUSUM, and EWMA control charts with 
Q statistics (EWMA Q chart and CUSUM Q chart) for residuals of AR(1) 
process. Kim, Alexopoulos, Goldsman, & Tsui (2006) [32] considered a 
CUSUM process as their monitoring statistic that is a bit different 
than that of Johnson & Bagshaw (1974), and they approximate this CUSUM 
process by a Brownian motion process. Noorossana & Vaghefi (2006) [33] 
investigated the effect of autocorrelation on performance of the 
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MCUSUM control chart. Triantafyllopoulos (2006) [34] has developed a 
new multivariate control chart based on Bayes’ factors. This control 
chart is specifically aimed at multivariate autocorrelated and 
serially correlated processes and tested for AR(1) process. Yang & 
Yang (2006) [16] considered the problem of monitoring the mean of a 
quality characteristic x on the first process step and the mean of a 
quality characteristic y on the second process step, in which the 
observations x can be modeled as an AR(1) model and observations y can 
be modeled as a transfer function of x since the state of the second 
process step is dependent on the state of the first process step. To 
effectively distinguish and maintain the state of the two dependent 
process steps, the Shewhart control chart of residual and the cause 
selecting chart (CSC) are proposed. They showed that the proposed 
control charts are much better than the misused Hotelling T2 control 
chart and the individual shewhart chart. Ghourabi & Limam (2007) [35] 
proposed a new method of residual process control, the Pattern Chart 
and tested this new chart for AR(1) process and compared its ARL 
values with SCC chart. Costa & Claro (2008) [36] considered the double 
sampling (DS) x  control chart for monitoring processes in which the 
observations can be represented as ARMA(1,1) model. Zou, wang, & Tsung 
(2008) [17] suggested using a variable sampling scheme at fixed times 
(VSIFT) to enhance the efficiency of the x  control chart for the 
autocorrelated data. Two charts are under consideration, that is, the 
VSIFT x  and variable sampling rate with sampling at fixed times (VSRFT 
x ) charts. These two charts are called x -VSFT charts. The authors 
used AR(1) model as representative model for their study. An 
integration equation method combined with a Markov process model was 
developed to study the performance of these charts. Sheu & Lu (2009) 
[37] examined a GWMA with a time-varying control chart for monitoring 
the mean of a process based on AR(1) process and they compared ARL 
performance of GWMA and EWMA charts. Weiss & Testik (2009) [38] 
investigated the CUSUM control chart for monitoring autocorrelated 
processes of counts modeled by a Poisson integer-valued autoregressive 
model of order 1 (Poisson INAR(1)). Knoth, Morais, Pacheco, & Schmid 
(2009) [39] discussed the impact of autocorrelation on the probability 
of misleading signals (PMS) of simultaneous Shewhart and EWMA residual 
schemes for the mean and variance of a AR(1) process. 

Use of a residual chart has the advantage that it can be applied 
to any autocorrelated data even if the data from a nonstationary 
process. It needs time series modeling efforts [12]. Although the 
residual charts have some advantages by using them for autocorrelated 
processes, there are some problems due to the detection capability of 
the residual chart. Harris & Ross (1991) [40] recognized that the 
CUSUM control chart and EWMA control chart for the residuals from a 
first-order autoregressive (AR(1)) process may have poor capability to 
detect the process mean shift. Wardell, Moskowitz, & Plante (1994a) 
[41] showed that Shewhart charts are not completely robust to 
deviations from the assumption of process randomness; namely when 
observations are correlated. EWMA chart is very good at detecting 
small shifts, and performs well for large shifts at only the case when 
the autoregressive parameter is negative and the moving average 
parameter is positive. No other chart is obviously dominant under 
every condition. They showed that when the processes were positively 
autocorrelated (at the first lag), the residual chart did not perform 
very well. Zhang (1997a) also studied on detection capability of 
residual chart for autocorrelated data. In his study, Zhang defined a 
measure of the detection capability of the residual x-chart for the 
general stationary process and showed that the detection capability of 
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a residual chart for AR(2) process was small compared to the detection 
capability of the x chart [42]. One of the most important 
disadvantages of residual charts is that the time series modeling 
knowledge is needed for constructing the ARIMA model and some residual 
charts which based on two valid time series models signal differently. 
To overcome the disadvantages of residual-based control charts, 
monitoring the autocorrelated observations by modifying the standard 
control limits to account for the autocorrelation is suggested. These 
modified control charts for autocorrelated data are described in the 
next section. 

 
3.2. Modified Control Charts  
     (Modifiye Edilmiş Kontrol Kartları)   
Modified control charts such as moving centerline exponentially 

weighted moving average (MCEWMA),exponentially weighted moving average 
for stationary process (EWMAST), autoregressive moving average (ARMA) 
control charts and other modified control charts are introduced to 
deal with the disadvantages of the residual charts. MCEWMA control 
chart is used for individual observations. The MCEWMA chart is based 
on the familiar EWMA chart that is also standard in the literature; 
however, it adapts the EWMA for the autocorrelated data given by the 
ARIMA disturbance model [43]. Montgomery & Mastrangelo (1991) [44] 
point out that it is possible to combine information about the state 
of statistical control and process dynamics on a single control chart. 
EWMAST control chart has been introduced by Zhang in 1998 to deal with 
the disadvantages of the residual charts. EWMAST chart is an extension 
of the traditional EWMA chart and basically constructed by charting 
the EWMA statistics for stationary process. EWMAST chart is a EWMA 
chart for stationary processes. Zhang (1998) [42] remarked that the 
limits of the EWMAST chart are different from that of the traditional 
EWMA chart when the data are autocorrelated. When the process is 
positively autocorrelated, the limits of the EWMAST chart are wider 
than that of the ordinary EWMA chart. Zhang showed that a EWMA of a 
stationary process is asymptotically a stationary process. The 
autocovariance function of EWMA is derived when the process is 
stationary. Then the EWMAST chart for general stationary process is 
established. The control limits of the EWMAST chart are analytically 
determined by the process variance and autocorrelation. When the 
process is nonstationary or near nonstationary with strong and 
positive autocorrelations, residual charts can be used. When the mean 
shifts are small, however, the performance of the residual chart is 
still satisfactory. Actually, no process control chart performs well 
in this case. In general, nonstationarity or near nonstationarity with 
positive autocorrelation is likely to occur when the data are acquired 
at high frequency. In this case the large in-control ARLs (such as 
those of the EWMAST chart) are often desirable, and the corresponding 
large out-of-control ARLs are much less a problem [42]. SCC chart is 
shown to be effective when detecting large shifts. The EWMAST chart 
performs better than the SCC chart when the process autocorrelation is 
not very strong and the mean changes are not large. On the other hand, 
the EWMAST chart applies the EWMA statistic directly to the 
autocorrelated process without identifying the process parameters and 
shown to be efficient in some parameter regions [45]. An obvious 
advantage of using EWMAST chart is that there is no need to build a 
time series model. The EWMAST chart is easy to implement just like its 
special case, ordinary EWMA chart. On the other hand, implementation 
of a residual chart needs a time series modeling algorithm [42]. 

By integrating the advantages of SCC chart and EWMAST chart and 
taking into account the autocorrelation structure of the underlying 
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process, a family of control charts, the ARMA chart is proposed by 
Jiang, Tsiu, & Woodal (2000) [45]. This charting technique based on an 
autoregressive moving average (ARMA) statistic and provides a more 
flexible choise of parameters to relate the autocorrelation structure 
of the statistic to the chart performance and includes the special 
cause chart (SCC) chart and the EWMAST chart as special cases. It is 
shown that an ARMA chart with appropriate parameter values will 
outperform both the SCC and EWMAST charts for autocorrelated 
processes. Jiang et al. (2000) [45] use the same notation of the 
EWMAST chart proposed by Zhang (1998) [42], and denote the ARMA chart 
as the ARMAST chart that is proposed for stationary processes. 

On the other hand, the limitations of distribution-based 
procedures can be overcome by distribution-free SPC charts. Runger & 
Willemain (R&W) (1995) [46] organized the sequence of observations of 
the monitored process into adjacent nonoverlapping batches of equal 
size; and their SPC procedure called unweighted batch means (UBM) is 
applied to the corresponding sequence of batch means. They choose a 
batch size larger enough to ensure that the batch means are 
approximately iid normal, and then they apply to the batch means one 
of the classical SPC charts developed for iid normal data, including 
the Shewhart and Tabular CUSUM charts. In contrast to this approach, 
Johnson & Bagshaw (J&B) (1974) [47] and Kim, Alexopoulos, Goldsman, & 
Tsui (2006) [32] presented CUSUM based methods that use raw 
(unbatched) observations instead of batch means. Computing the control 
limits for the latter two procedures requires an estimate of the 
variance parameter of the monitored process that is the sum of 
covariances at all lags (see [32] for experimental evaluations of R&W 
chart and J&B chart) 

Kim et al. (2006) [32] considered a CUSUM process as their 
monitoring statistic that is a bit different than that of Johnson & 
Bagshaw (1974) [47], and they approximate this CUSUM process by a 
Brownian motion process. By exploiting the known properties of 
Brownian motion, they derive a new model-free CUSUM chart called the 
MFC Chart. The proposed SPC procedure requires the asymptotic variance 
constant which is the sum of covariances of all lags, the procedure is 
completely model-free - including the design of control limits and 
chart parameters - with the help of non-parametric variance estimation 
techniques popular in the simulation community. The MFC chart can be 
used with raw observations or batch means of any size, so using large 
batches can be avoided. Also this procedure provides a convenient way 
to compute control limits like the Shewhart chart does [32]. Another 
distribution-free chart is rum sum chart proposed by Willemain & 
Runger (1998) [48]. Their use of run sums is revival of an earlier 
idea. The use of coded run sums for iid data was described by Roberts 
(1996), who cited earlier work by Toda (1958), who in turn cited 
Imaizuma (1955) and Reynolds (1971) presented a simplified overview 
[48]. The Run Sum chart proposed by Willemain & Runger (1998) [48] 
differs from these earlier works in two significant ways. First, they 
consider the autocorrelated data characteristic of data-rich 
environments. Second, they use the sums of the observations directly, 
whereas earlier work coded the data values into integer scores before 
summing. Most SPC methods are not suitable for monitoring nonlinear 
and state-dependent processes. Another approach to developing 
distribution-free SPC charts is taken by Ben-Gal, Morag, & Shmilovici 
(2003) [30]. They presented context-based SPC (CSPC) methodology for 
state-dependent discrete-valued data generated by a finite memory 
source. The key idea of the CSPC is to monitor the statistical 
attributes of a process by comparing two context trees at any 
monitoring period of time. The first is a reference tree that 
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represents the “in-control” reference behavior of the process; the 
second is a monitored tree, generated periodically from a sample of 
sequenced observations that represents the behavior of the process at 
that period. The Kullback–Leibler (KL) statistic is used to measure 
the relative “distance” between these two trees, and an analytic 
distribution of this statistic is derived. Monitoring the KL statistic 
indicates whether there has been any significant change in the process 
that requires intervention. The proposed CSPC extends the scope of 
conventional SPC methods. It allows the operators to monitor varying-
length state-dependent processes as well as independent and linear 
ones. The CSPC is more generic and less model-biased with respect to 
time series modeling. The major drawback of CSPC is relatively large 
sample size required during the monitoring stage. Therefore, it should 
be applied primarily to processes with high sampling frequency, such 
as the buffer-level monitoring process. The CSPC is currently limited 
to discrete and single-dimensional processes [30]. For distribution 
free processes “distribution free charts” are suggested. Kim, 
Alexopoulos, Tsui, & Wilson (2007) [49] proposed a distribution free 
tabular CUSUM (DFTC) chart to detect mean shifts of autocorrelated 
observations. The authors defined the proposed chart as “a 
generalization of the conventional tabular CUSUM chart that is 
designed for iid normal random variables”. 

When the literature is reviewed for 1997-2010 year range, it is 
clearly observed that the following studies are remarkable. As refered 
before, Zhang (1998) [42] proposed exponentially weighted moving 
average for stationary process (EWMAST) control chart, which is a 
modified control chart for autocorrelated data, and tested this new 
chart for AR(1), AR(2), ARMA(1,1) processes. Willemain & Runger (1998) 
[48] proposed Run sum chart which is a distribution-free chart and 
examined the residuals of AR(1) and ARMA(1,1) processes. Apley & Shi 
(1999) [50] presented an on-line SPC technique, based on a GLRT, for 
detecting and estimating mean shifts in autocorrelated processes that 
follows a normally distributed ARIMA(4,0,3) model. The GLRT is applied 
to the uncorrelated residuals of the appropriate time-series model. 
The performance of GLRT is compared to Shewhart and CUSUM charts. By 
integrating the advantages of SCC chart and EWMAST chart and taking 
into account the autocorrelation structure of the underlying process, 
a family of control charts, the autoregressive moving average (ARMA) 
chart is proposed by Jiang, Tsiu, & Woodal (2000) [45]. They compared 
the performances of ARMA, ARMAST, EWMAST, EWMA, CUSUM and Shewhart 
control charts for AR(1), ARMA(1,1) processes. Later in (2001) [51] 
jiang performed the average run length computation of ARMA charts for 
stationary processes and developed a Markow chain model for evaluating 
the run length performance of the ARMA chart applied to an ARMA (p,q) 
process. By exploiting the known properties of Brownian motion, they 
derive a new model-free CUSUM chart called the MFC Chart and tested 
this new chart for AR(1) process. Winkel & Zhang (2004) [53] compared 
the performances of EWMA for the residuals of AR(1) process and EWMAST 
control charts for AR(1) process. Brence & Mastrangelo (2006) [52] 
explored the capabilities of the tracking signals and the MCEWMA when 
the smoothing constants are varied and a shift is introduced into the 
AR(1) and ARMA(1,1) processes. Kim et al. (2007) [49] proposed a 
distribution free tabular CUSUM (DFTC) chart to detect mean shifts in 
autocorrelated and normal distributed process observations. Stationary 
AR(1) and AR(2) processes are used to test its performance. Cheng & 
Chou (2008) [54] used ARMA control chart in a real-time inventory 
decision system using Western Electric run rules. They monitored the 
data of demand that presents a pattern of time series. They employed 
ARMA chart to monitor the market demand that is autocorrelated and 
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used individual control chart to monitor the inventory level. Issam & 
Mohamed (2008) [55] proposed to apply support vector regression (SVR) 
method for construction of a residual multivariate CUSUM (MCUSUM) 
chart, for monitoring changes in the process mean vector. Koksal, 
Kantar, Ula, & Testik (2008) [56] investigated the effect of Phase I 
sample size on the run length performance of  Residual chart, modified 
Shewhart chart, EWMAST chart and ARMA chart for monitoring the changes 
in the mean of AR(1) process.  

 
3.3. Neural Network Based Control Charts  
     (Yapay Sinir Ağı Tabanlı Kontrol Kartları)   
A neural network is an approach to data processing that does not 

require model or rule development. Researchers have been investigating 
the use of artificial neural networks (NNs) in the application of 
control chart pattern (CCP) recognition with encouraging results in 
recent years. When compared to other methodologies the neural network 
approach has certain advantages. The model development is much simpler 
than that for most other approaches. Instead of theoretical analysis 
and development for a new model the neural network tailors itself to 
the training data. The model can be refined at any time with the 
addition of new training data [57]. Also note that, a traditional 
control chart considers only the current sample when determining the 
status of a process and hence does not provide any pattern related 
information. NN based process control charts can classify patterns 
that the traditional charting methods for autocorrelated data cannot 
properly handle [58]. Because of these advantages application of NNs 
to SPC has great interest in recent years. The application of NNs to 
SPC can be commonly classified into two categories: (i) control chart 
pattern recognition and (ii) detection of unnatural behavior [2]. In 
the second category, NN used to diagnose the shift in the mean of a 
manufacturing process.  

Few studies on mean shift detection of autocorrelated processes 
by a neural-based approach were presented. West, Mangiameli, & Chen 
(1999) [59] investigated the ability of radial basis function NNs to 
monitor and control complex manufacturing processes that exhibit both 
auto and cross-correlation. They demonstrated that the radial basis 
function network is superior to three control models proposed for 
complex manufacturing processes: multivariate Shewhart, MEWMA, and a 
feed forward NN with logistic units trained by backpropagation (often 
called a back propagation neural network (BPN)). They used VAR(1) 
model as the representative process model for their work. Chiu, Chen, 
& Lee (2001) [60] used BPN to identify shifts in process parameter 
values from AR(1) process. Pacella & Semeraro (2007) [2] proposed 
Elman recurrent neural network for manufacturing processes quality 
control. For a wide range of possible shifts and autocorrelation 
coefficients, performance comparisons between the neural-based 
algorithm and SCC chart, X chart, EWMAST chart are presented for 
ARMA(1,1) model. Guh (2008) [58] presented a learning vector 
quantization (LVQ) based system that can effectively recognize CCPs in 
real time for various levels of autocorrelation for AR(1) model and 
compared its ARL performance with SCC chart, X chart and EWMA chart. 
Hwarng & Wang (2010) [61] proposed a neural network based identifier 
(NNI) for multivariate autocorrelated processes. A rather extensive 
performance evaluation of the proposed scheme is carried out, 
benchmarking it against three statistical control charts, namely the 
Hotelling T2 control chart, the MEWMA chart and the Z chart.      
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4. CONCLUSION AND SUGGESTIONS (SONUÇ VE ÖNERİLER) 
Over the last two decades, control charts for autocorrelated 

observations have been applied to an increasing number of real-world 
problems. In the present paper, control chart applications for the 
autocorrelated processes were reviewed, and the historical progression 
in this field was emphasized in order to help the interested 
researchers and practitioners get informed about the references on the 
relevant research in this field, regarding the design, performance and 
applications of control charts for autocorrelated processes. Recent 
research studies for autocorrelated data are summarized in Table 1 in 
a chronological order, in order to see the gradual development in 
these works. This survey aimed to review publications appearing in 
refereed journals between 1997 and 2009.   

A summary of some unanswered questions and future research ideas 
for control chart applications on autocorrelated process observations 
are listed below: 

 VAR(1) processes prevalently inspected for multivariate 
autocorrelated processes. Higher order multivariate cases may be 
considered in the future researches.  

 In general, control chart performances for ARIMA (1,1,1) model 
are studied but performances for higher orders have not been 
studied prevalently. Future research may focus on this area.    

 In recent years, several modifications adopting the variable 
sampling interval (VSI), variable sample size (VSS) and variable 
sampling rate (VSR) or variable sampling interval and sampling 
size (VSSI) in the x control, CUSUM and EWMA charts, have been 
suggested to improve traditional FSI policy. These VSSI features 
may be extended to other control charts. 

 Shewhart, EWMA and CUSUM charts for residuals for short run 
autocorrelated data of AR(1) process have been investigated. The 
performance of modified control charts for short run can be 
investigated extensively for autocorrelated processes.  

 Control chart applications to different areas such as real-time 
inventory decision systems are presented (see [54]). According 
to Cheng & Chou (2008) [54] the future research may be focused 
on the study of the effect of lead time on the performance of 
the inventory decision systems. This study is a good case for 
applying control charts to different scientific areas. Similar 
studies can be performed on different scientific areas where the 
process observations are needed to be observed between upper-
lower limits and had to have a mean value.   

 Investigating the impact of estimators of mean and variance 
(namely based on an auxiliary and independent random sample) on 
probability of misleading signals (PMS), or the influence of 
trends on PMS can be studied (see [39]). 

 One-sided Poisson INAR(1) CUSUM control chart is proposed by 
Weiss & Testik (2009) [38] and performance of this chart is 
presented. According to the authors, analysis of the performance 
of this CUSUM scheme in the case when the chart design is based 
on estimated parameters is a particularly important issue for 
future work. Furthermore, it should be investigated how the 
proposed one-sided CUSUM chart can be extended to a two-sided 
chart, and if an exact ARL computation would still be possible 
in this case.   
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Table 1. Evolution of control charts for autocorrelated data 
(Tablo 1. Very otokorelasyon kontrol kartlarının gelişimi) 

Year Author(s) Control Charts Autocorrelation 
Structure 

1974 Johnson & Bagshaw J&B AR(1) 
1988 Alwan & Roberts Shewhart x , CCC, SCC IMA(1,1), ARMA(1,1) 

1989 Yourstone & Mongomery  GMA, GMR ARMA(2,1), AR(2) 
1991 Harris & Ross EWMA, CUSUM AR(1) 
1991 Montgomery & 

Mastrangelo  
MCEWMA AR(1) 

1991 Yourstone & Mongomery SACC, GACC AR(4), ARMA(2,4) 
1992 Wardell et al. EWMA ARMA(1,1) 
1994 Wardell et al. Shewhart x , EWMA AR(1) 

1995 Mastrangelo & 
Montgomery 

MCEWMA IMA(1,1), ARIMA(1,1,1), 
AR(1), AR(2), ARMA(1,1) 

1995 Runger & Willemain R&W AR(1) 
1997 Kramer & Schmid  Shewhart x  AR(1) 

1997 Reynolds & Lu  EWMA AR(1) 
1997 Yang & Makis  Shewhart x , CUSUM, EWMA AR(1) 

1997 Zhang  Shewhart x  AR(2) 

1997 Atienza et al. SACC, SCC, CUSUM AR(1), MA(1) 
1998 Willemain & Runger Run sum chart AR(1), ARMA(1,1) 
1998 Zhang EWMAST AR(1), AR(2), ARMA(1,1) 
1999 Apley & Shi  Cuscore charts ARIMA(4,0,3) 
1999 Reynolds & Lu  EWMA AR(1) 
1999 West et al. Multivariate Shewhart, 

MEWMA, BPN 
VAR(1) 

2000 Jiang et al. ARMA, ARMAST, EWMAST, EWMA, 
CUSUM, Shewhart x  

AR(1), ARMA(1,1) 

2000 Luceno & Box  One-sided CUSUM AR(1) 
2001 Jiang ARMA ARMA(1,1) 
2001 Rao et al. CUSUM AR(1) 
2001 Chiu et al. BP Neural Network AR(1) 
2002 Jiang et al. PID ARMA(1,1) 
2002 Kacker & Zhang Shewhart x  IMA( , ) 
2002 Shu et al. CUSUM-triggered Cuscore ARMA(1,1) 
2003 Ben-Gal et al. CSPC AR(1), AR(2), MA(1) 
2004 Winkel & Zhang EWMA, EWMAST AR(1) 
2005 Snoussi et al. Shewhart x , CUSUM, EWMA, 

EWMA Q, CUSUM Q  

AR(1) 

2005 Winkel & Zhang EWMAST, EWMA AR(1) 
2005 Kim et al. MFC AR(1) 
2006 Yang & Yang CSC, Shewhart- x , Hottelling 

T2 

AR(1) 

2006 Brence & Mastrangelo  MCEWMA AR(1), ARMA(1,1) 
2006 Noorossana & Vaghefi MCUSUM AR(1) 
2006 Triantafyllopoulos A new Multivariate Control 

Chart 
AR(1) 

2007 Kim et al. DFTC AR(1), AR(2) 
2007 Ghourabi & Limam Pattern Chart, SCC  AR(1) 
2007 Pacella & Semeraro SCC, X chart, EWMAST, Elman 

NN 
ARMA(1,1) 

2008 Costa & Claro DS x   ARMA(1,1) 

2008 Zou et al. VSIFT x , VSRFT x  AR(1) 

2008 Cheng & Chou  ARMA ARMA(1,1) 
2008 Issam & Mohamed  MCUSUM VAR(1) 
2008 Koksal et al. Residual chart, modified 

Shewhart, EWMAST, ARMA 
AR(1) 

2008 Guh SCC, X chart, EWMA, LVQ NN AR(1) 
2009 Weiss & Testik CUSUM Poisson INAR(1) 
2009 Sheu & Lu GWMA, EWMA AR(1) 
2009 Knoth et al. Shewhart, EWMA AR(1) 
2010 Hwarng & Wang Hotelling T2, MEWMA, Z 

chart, NN Identifier  
VAR(1) 
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 The effect of parameter estimation has not been considered for 
many types of control charts, especially the charts with VSS 
and/or VSI. Researches for these charts are needed in order to 
have good recommendations on how to best design the charts with 
estimated parameters.   

 The combined effect of model misspecifications and parameter 
estimation on control charts for autocorrelated data may be 
investigated widely, because of being strongly dependent on the 
correctness of the assumed time series model.  

 The study of Yang & Yang (2006) [16] can be extended to the 
process control for autocorrelated observations with the ARMA 
model under two dependent process steps and the adaptive process 
control for correlated observations with the ARMA model under 
two dependent process steps.  

 A major advantage of the approach that is proposed by 
Triantafyllopoulos (2006) [34] as compared with other 
multivariate control charts is that once the log Bayes’ factors 
have been obtained, any appropriate univariate control chart can 
be applied. This important area of SPC is an interesting 
research area for future research and the work performed by 
Triantafyllopoulos (2006) [34] can be extended to other control 
charts such as modified CUSUM and non-parametric control charts 
that do not require any knowledge about the underlying 
distribution of the variable. 

 The pattern chart’s performance that is proposed by Ghourabi & 
Limam [35] for residuals of autocorrelated process observations 
is compared with SCC chart. The performance of proposed chart 
can be compared with other control charts for residuals. 

 Different neural network based approaches are presented for 
multivariate processes. However all these works considered 
VAR(1) processes. Further researches may be focus on higher-
order multivariate cases for identifying a shift.  

 Adapting neural networks to real-time is a problem. The 
researches may direct their work to design more efficient 
training regime, including the use of training data and training 
time.  

 Neural network based pattern recognizers for autocorrelated data 
are applied to first order autocorrelated processes. Further 
researches may focus on higher order autoregressive and 
autoregressive moving average cases.  

 Much recent neural network based research for identifying shift 
in mean focused on most commonly used control chart patterns 
(natural pattern, upward-downward shift, increasing-decreasing 
trend, cycle). More empirical work can be done for other 
patterns, such as systematic variation or mixture.   
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