ISSN:1306-3111
e-Journal of New World Sciences Academy 2011, Volume: 6, Number: 1, Article Number: 3A0030

PHYSICAL SCIENCES

Received: October 2010
Accepted: January 2011
Series : 3A
ISSN : 1308-7304
© 2010 www.newwsa.com

INVERSE PROBLEM FOR PERIODIC STURM-LIOUVILLE OPERATOR

ABSTRACT
In this paper it is studied periodic Sturm-Liouville problem.It is obtained for Hill operatör the generalized degeneracy of the fundemental integral equation for on two partially non coinciding spectra.

Keywords: Hill Equation, Spectrum, General Degeneracy, Normalized Numbers, Translation Operator

PERİYODİK STURM-LIOUVILLE OPERATORÜ İÇİN TERS PROBLEM
ÖZET
Bu makalede periyodik Sturm-Liouville problemi ele alınarak,bu problemde Hill operatörü için kısmen çakışmayan iki spektruma göre ters problemin esas integral denkleminin genel dejeneriliği gösterilmistir.

Anahtar Kelimeler: Hill Denklemi, Spektrum, Genel Dejenere,
Normlaştırıcı Sayılar, Dönüşüm Operatörü

1. INTRODUCTION (GİRİŞ)

We consider periodic

$$
\begin{gather*}
-y^{\prime \prime}+q(x) y=\lambda y \tag{1.1}\\
y(0)=y(\pi), y^{\prime}(0)=y^{\prime}(\pi)
\end{gather*}
$$

and anti-periodic

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=\lambda y \tag{1.2}
\end{equation*}
$$

$$
y(0)=y(\pi), y^{\prime}(0)=y^{\prime}(\pi)
$$

Sturm-Liouville problems [10],[11],[14]. we assume that the potential $\mathrm{q}(\mathrm{x})$ is a smooth periodic function of π period We denote the spectrum of the periodic problem by $\lambda_{0}<\lambda_{3} \leq \lambda_{4}<\lambda_{7} \leq \lambda_{9}$.. and the spectrum of the anti-periodic problem by $\lambda_{1} \leq \lambda_{2}<\lambda_{5} \leq \lambda_{6}<\lambda_{8} \leq \ldots$ [9], [17].

Along with the problem (1.1) and (1.2), we consider yet another problem

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=\lambda y \tag{1.3}
\end{equation*}
$$

we denote the spectrum of the problem (1.3) by $\eta_{1}<\eta_{2}<\eta_{3}<\ldots$ It is well known that $\lambda_{1} \leq \eta_{1} \leq \lambda_{2}<\lambda_{3} \leq \eta_{2} \leq \lambda_{4}<$. We denote by $\varphi(x, \lambda)$ and $\psi(x, \lambda)$ solutions of (1.1) satisfying the initial conditions $\varphi(0, \lambda)=\psi^{\prime}(0, \lambda)=-1$ and $\varphi(0, \lambda)=\psi(0, \lambda)=0$. [14-22]. We call $\Delta(\lambda)=\psi(\pi, \lambda)+\varphi(\pi, \lambda)$ a Hill (or Ljapunov) function. We have

- Theorem 1: If the Δ and $\tilde{\Delta}$ coincide and the $\operatorname{spectrum}\left(\eta_{n}\right)$ and ($\tilde{\eta}_{n}$) differ in a finite number of their terms, then the Gelfand-Levitan integral equation is degenerate in the extended sense.

2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ)

The integral equation $K(x . t)$ has given and this function be a general degenerated function. This presentation is very important, so functions, which are defined in $K(x, t)$, are corresponding to eigenvalues of Hill equation. Hill operator has a great importance in Quantum mechanics and solid state Physics.

3. INVERSE PROBLEMS ON HILL EQUATION (HİLL DENKLEMI ÜZERİNDE İNVERS PROBLEM)

- Theorem 1: For $\forall n>N, \tilde{\lambda}_{n}=\lambda_{n}$ and for $n=1,2, \ldots N, \tilde{\lambda}_{n} \neq \lambda_{n}$,

$$
q(x+\pi)=q(x) \text { and } \tilde{q}(x+\pi)=\widetilde{q}(x)
$$

$$
K(x, t)+F(x, t)+\int_{0}^{\pi} K(x, s) F(t, s) d s=0,(0 \leq x \leq s \leq \pi)
$$

the integral equation of the invers problem.generalized degeneracy. So, we can show $K(x, t), \quad F(x, t)$ as

$$
\begin{aligned}
& K(x, t)=\sum_{n=1}^{N} c_{n} f_{n}(x) \tilde{g}_{n}(t) \\
& F(x, t)=\sum_{n=1}^{N} c_{n} p_{n}(x) \tilde{\sigma}_{n}(t) .
\end{aligned}
$$

Here with order $f_{n}(x), \quad p_{n}(x)$ and $\tilde{g}_{n}(t), \quad \tilde{\sigma}_{n}(t)$ solutions of periodic SturmLiouville equations potantials $q(x)$ and $\tilde{q}(x)$.

Proof: We assume that the potential $q(x)$ is a smooth periodic function of period π.

$$
\begin{gather*}
-y^{\prime \prime}+q(x) y=\lambda y, \tag{3.1}\\
y(0)=y(\pi), y^{\prime}(0)=y^{\prime}(\pi) \tag{3.2}
\end{gather*}
$$

and

$$
-y^{\prime \prime}+q(x) y=\lambda y
$$

$$
\begin{equation*}
y(0)=-y(\pi), y^{\prime}(0)=-y^{\prime}(\pi) \tag{3.3}
\end{equation*}
$$

we consider the two Sturm-Liouville problems. We call the first problem a periodic Sturm-Liouville problem, and the second an anti-periodic SturmLiouville problem. We denote the spectrum of the first problem by

$$
\lambda_{0}<\lambda_{3} \leq \lambda_{4}<\lambda_{7} \leq \lambda_{9}
$$

and the spectrum of the second by

$$
\lambda_{1} \leq \lambda_{2}<\lambda_{5} \leq \lambda_{6}<\lambda_{8} \leq \ldots
$$

Both spectra can be arranged in a single chain of inequalities, namely,

$$
\lambda_{0}<\lambda_{1} \leq \lambda_{2}<\lambda_{3} \leq \lambda_{4}<\ldots
$$

Along with the problems (3.1)-(3.2) and (3.1)-(3.3), we consider another problem (3.4)

$$
\begin{align*}
& -y^{\prime \prime}+q(x) y=\lambda y \\
& y^{\prime}(0)=-y^{\prime}(\pi)=0 \tag{3.4}
\end{align*}
$$

We denote the spectrum of the problem (3.4) by

$$
\eta_{1}<\eta_{2}<\eta_{3}<\ldots
$$

It is well known that

$$
\lambda_{1} \leq \eta_{1} \leq \lambda_{2}<\lambda_{3} \leq \eta_{2} \leq \lambda_{4}<. .
$$

We denote by $\varphi(x, \lambda)$ and $\psi(x, \lambda)$ solution of (3.1)-(3.2) and (3.1)-(3.3)
satisfying the initial conditions and $\varphi^{\prime}(0, \lambda)=\psi(0, \lambda)=0$. Further, we put

$$
\begin{equation*}
\Delta(\lambda)=\psi^{\prime}(\pi, \lambda)+\varphi(\pi, \lambda) \tag{3.5}
\end{equation*}
$$

We call $\Delta(\lambda)$ a Ljapunov function. The eigenvalues of the periodic problem are the roots of the equation $\Delta(\lambda)=2$; the eigenvalues of the anti-periyodik problem are the roots of the equation $\Delta(\lambda)=-2$. Solutions of (3.1) are π periodic if and only if $\varphi(\pi, \lambda)=\psi(\pi, \lambda)=0$. It follovs from the constancy of the Wronskiyan that

$$
W\{\psi, \varphi\}=\left|\begin{array}{cc}
\varphi & \varphi^{\prime} \tag{3.6}\\
\psi & \psi^{\prime}
\end{array}\right|=\varphi(\pi, \lambda) \psi^{\prime}(\pi, \lambda)-\varphi^{\prime}(\pi, \lambda) \psi(\pi, \lambda)=1
$$

Puting $\lambda=\lambda_{n}$ in (3.5) and (3.6), we obtain the system of equations

$$
\begin{aligned}
& \psi^{\prime}\left(\pi, \lambda_{n}\right)+\varphi\left(\pi, \lambda_{n}\right)=\Delta\left(\lambda_{n}\right) \\
& \psi^{\prime}\left(\pi, \lambda_{n}\right) \varphi\left(\pi, \lambda_{n}\right)=1
\end{aligned}
$$

from which it follows that

$$
\begin{gather*}
\varphi\left(\pi, \lambda_{n}\right)=\Delta\left(\lambda_{n}\right) \mp \sqrt{\Delta^{2}\left(\lambda_{n}\right)-1} \tag{3.7}\\
\psi^{\prime}\left(\pi, \lambda_{n}\right)=\Delta\left(\lambda_{n}\right) \pm \sqrt{\Delta^{2}\left(\lambda_{n}\right)-1} \tag{3.8}
\end{gather*}
$$

using $\Delta^{2}\left(\lambda_{n}\right)=1$, and for this reason from (3.7) and (3.8) and from asimptotik formulas, we obtain for $\varphi(x, \lambda)$ and $\psi^{\prime}(x, \lambda)$

$$
\begin{equation*}
\psi^{\prime}\left(\pi, \lambda_{n}\right)=\varphi\left(\pi, \lambda_{n}\right)=(-1)^{n} \tag{3.9}
\end{equation*}
$$

Lemma: If $\varphi\left(x, \lambda_{n}\right)$ solution function we obtain

$$
\begin{aligned}
& -\psi^{\prime \prime}\left(x, \lambda_{n}\right)+q(x) \psi\left(x, \lambda_{n}\right)=\lambda_{n} \psi\left(x, \lambda_{n}\right) \\
& -\psi^{\prime \prime}\left(x, \eta_{n}\right)+q(x) \psi\left(x, \eta_{n}\right)=\eta_{n} \psi\left(x, \eta_{n}\right)
\end{aligned}
$$

first equation multiplicate with $\psi\left(x, \eta_{n}\right)$ and second equation multiplicate with $\psi\left(x, \lambda_{n}\right)$ and we subtraction second equation from first equation we obtain

$$
-\psi^{\prime \prime}\left(x, \lambda_{n}\right) \psi\left(x, \eta_{n}\right)+\psi^{\prime \prime}\left(x, \eta_{n}\right) \psi\left(x, \lambda_{n}\right)=\left(\lambda_{n}-\eta_{n}\right) \psi\left(x, \lambda_{n}\right) \psi\left(x, \eta_{n}\right)
$$

Last equation integrate from 0 to π,

$$
\begin{align*}
\left(\lambda_{n}-\eta_{n}\right) \int_{0}^{\pi} \psi\left(x, \lambda_{n}\right) \psi\left(x, v_{n}\right) d x & =\int_{0}^{\pi}\left(-\psi^{\prime \prime}\left(x, \lambda_{n}\right) \psi\left(x, \eta_{n}\right)+\psi^{\prime \prime}\left(x, \eta_{n}\right) \psi\left(x, \lambda_{n}\right)\right) d x \\
\int_{0}^{\pi} \psi\left(x, \lambda_{n}\right) \psi\left(x, v_{n}\right) d x & =\frac{\psi^{\prime}\left(x, \eta_{n}\right) \psi\left(x, \lambda_{n}\right)-\psi^{\prime}\left(x, \lambda_{n}\right) \psi\left(x, \eta_{n}\right)}{\left(\lambda_{n}-\eta_{n}\right)} \tag{3.10}
\end{align*}
$$

For $n \rightarrow \infty$, because of $\lambda_{n} \rightarrow \eta_{n}$ right side give $\frac{0}{0}$ indefiniteness From L'hospital rule, derived the dot indicates differentiation with respect to λ,
we obtain

$$
\int_{0}^{\pi} \psi\left(x, \lambda_{n}\right) \psi\left(x, v_{n}\right) d x=\psi^{\prime}\left(x, \eta_{n}\right) \dot{\psi}\left(x, \lambda_{n}\right)-\psi^{\prime}\left(x, \lambda_{n}\right) \psi\left(x, \eta_{n}\right)
$$

Taking with $\eta_{n}=\lambda_{n}$, we obtain

$$
\int_{0}^{\pi} \psi^{2}\left(x, \lambda_{n}\right) d x=\psi^{\prime}\left(x, \lambda_{n}\right) \dot{\psi}\left(x, \lambda_{n}\right)-\psi^{\prime}\left(x, \lambda_{n}\right) \psi\left(x, \lambda_{n}\right)
$$

If we take $x=\pi$ and using $\psi(\pi, \lambda)=0$, we find normalized numbers

$$
\begin{equation*}
c_{n}=\int_{0}^{\pi} \psi^{2}\left(x, \lambda_{n}\right) d x=\psi^{\prime}\left(\pi, \lambda_{n}\right) \dot{\psi}\left(\pi, \lambda_{n}\right) \tag{3.11}
\end{equation*}
$$

Assume now that $q(x)$ and $\tilde{q}(x)$ are two potentials with the same Ljapunov function. [23]. We denote by $\psi(x, \lambda)$ solution of (a) which is satisfying the initial conditions $\psi(0, \lambda)=0, \psi^{\prime}(0, \lambda)=-1$.

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=\lambda y \tag{a}
\end{equation*}
$$

We denote by $\tilde{\varphi}(x, \lambda)$ solution of (b) which is satisfying the initial conditions $\tilde{\psi}(0, \lambda)=0, \tilde{\psi}^{\prime}(0, \lambda)=-1$.

$$
\begin{equation*}
-y^{\prime \prime}+\tilde{q}(x) y=\lambda y \tag{b}
\end{equation*}
$$

and by $\left\{\eta_{n}\right\}$, the roots of the equation $\psi(\pi, \lambda)=0$. by $\left\{\tilde{\eta}_{n}\right\}$, the roots of the equation $\tilde{\psi}(\pi, \lambda)=0$. It is well known that

$$
\begin{equation*}
X[\psi(x, \lambda)]=\tilde{\psi}(x, \lambda)=\psi(x, \lambda)+\int_{0}^{x} K(x, t) \psi(t, \lambda) d t \tag{3.12}
\end{equation*}
$$

The function $K(x, t)$ satisfies the equation

$$
\frac{\partial^{2} K}{\partial x^{2}}-\tilde{q}(x) K=\frac{\partial^{2} K}{\partial t^{2}}-q(t) K
$$

and the conditions

$$
\begin{gathered}
K(x, 0)=0 \\
K(x, x)=\frac{1}{2} \int_{0}^{x}[\widetilde{q}(z)-q(z)] d z
\end{gathered}
$$

[1-3]. If the potentials $q(x)$ and $\tilde{q}(x)$ have one and the same N-zoned Ljapunov function, then,

$$
\begin{gather*}
\tilde{\lambda}_{n}=\lambda_{n}, \quad \text { for } n>N \tag{3.13}\\
\tilde{\psi}^{\prime}\left(\pi, \lambda_{n}\right)=\psi^{\prime}\left(\pi, \lambda_{n}\right)=(-1)^{n}, \text { for } n>N \tag{3.14}
\end{gather*}
$$

We now use (3.13) and (3.14) to find the structure of the functions $K(x, t)$. Putting $x=\pi$ and $\lambda=\lambda_{n}$ in (a), we deduce that

$$
\tilde{\psi}\left(\pi, \lambda_{n}\right)=\psi\left(\pi, \lambda_{n}\right)+\int_{0}^{\pi} K(\pi, t) \psi\left(t, \lambda_{n}\right) d t
$$

Here because of $\tilde{\psi}\left(\pi, \lambda_{n}\right)=\psi\left(\pi, \lambda_{n}\right)$, we deduce

$$
\begin{gathered}
\int_{0}^{\pi} K(\pi, t) \psi\left(t, \lambda_{n}\right) d t=0 \quad(\text { for } n>N) \\
\int_{0}^{\pi} K(\pi, t) \psi\left(t, \lambda_{n}\right) d t=\tilde{\psi}\left(\pi, \lambda_{n}\right) \quad(\text { for } n \leq N)
\end{gathered}
$$

(for $n \leq N$ because of $\tilde{\lambda}_{n} \neq \lambda_{n}$ we obtain $\tilde{\psi}\left(\pi, \tilde{\lambda}_{n}\right) \neq \tilde{\psi}\left(\pi, \lambda_{n}\right)$. Also, because of $\tilde{\psi}\left(\pi, \tilde{\lambda}_{n}\right)=0$, we obtain $\tilde{\psi}\left(\pi, \lambda_{n}\right) \neq 0$) So, we deduce

$$
\begin{equation*}
K(\pi, t)=\sum_{n=1}^{N} \frac{\tilde{\psi}\left(\pi, \lambda_{n}\right)}{c_{n}} \psi\left(t, \lambda_{n}\right) \tag{3.15}
\end{equation*}
$$

Differentiating (a) and then putting $x=\pi$ and $\lambda=\lambda_{n}$, we obtain

$$
\begin{aligned}
& \widetilde{\psi}^{\prime}\left(\pi, \lambda_{n}\right)=\psi^{\prime}\left(\pi, \lambda_{n}\right)+K(\pi, \pi) \psi\left(\pi, \lambda_{n}\right)+\int_{0}^{\pi} \frac{\partial K}{\partial x} \psi\left(t, \lambda_{n}\right) d t \\
& \int_{0}^{\pi} \frac{\partial K}{\partial x} \psi\left(t, \lambda_{n}\right) d t=\tilde{\psi}^{\prime}\left(\pi, \lambda_{n}\right)-\psi^{\prime}\left(\pi, \lambda_{n}\right) \quad(\text { for } n>N)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\frac{\partial K}{\partial x}=\sum_{n=1}^{N} \frac{\tilde{\psi}^{\prime}\left(\pi, \lambda_{n}\right)-\psi^{\prime}\left(\pi, \lambda_{n}\right)}{c_{n}} \psi\left(t, \lambda_{n}\right) \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we obtain (in the triangle $(0 \leq x \leq s \leq \pi)$)

$$
-y^{\prime \prime}+\tilde{q}(x) y=\lambda y
$$

$$
\begin{equation*}
K(x, t)=\sum_{n=1}^{N}\left\{\tilde{\psi}\left(\pi, \lambda_{n}\right) \tilde{\theta}\left(x, \lambda_{n}\right)+\left[\tilde{\psi}^{\prime}\left(\pi, \lambda_{n}\right)-\psi^{\prime}\left(\pi, \lambda_{n}\right)\right] \tilde{\psi}\left(x, \lambda_{n}\right)\right\} \frac{\psi\left(t, \lambda_{n}\right)}{\left\|\psi\left(t, \lambda_{n}\right)\right\|^{2}} \tag{3.17}
\end{equation*}
$$

where $\tilde{\theta}(x, \lambda), \tilde{\phi}(x, \lambda)$ is the solution of the equation

$$
-y^{\prime \prime}+\tilde{q}(x) y=\lambda y
$$

satisfying the

$$
\tilde{\theta}(\pi, \lambda)=\tilde{\phi}^{\prime}(\pi, \lambda)=-1, \tilde{\theta}^{\prime}(\pi, \lambda)=\tilde{\phi}(\pi, \lambda)=0
$$

Relying on this representation of $K(x, t)$, we can prove the generalized of the kernel of the integral equation.

5. CONCLISIONS (SONUÇLAR)

The function $K(x . t)$ has a presentation as

$$
K(x, t)=\sum_{n=1}^{N} c_{n} f_{n}(x) \tilde{g}_{n}(t)
$$

in integral equation.This function is a degenerated function. This presentation is very important,so functions $f_{n}(x), g_{n}(t), \ldots f u n c t i o n s$ are corresponding to eigenvalues of Hill equation. Hill operator has a great importance in Quantum mechanics and solid state Physics.

REFERENCES (KAYNAKLAR)

1. Floquet G., (1883)." Sur les equations differentielles lineares a coefficients periodics" Ann de l'Ecole Normale, 2 Serie Vol.12, 47-88.
2. Hill, G.W., (1886)." On the part of the motion of the lunar perigee which of the mean motions of the sun and moon" , Acta Math. Vol.8, 1-36.
3. Poincare, H., (1890)." Sur le probleme des trois corps et les equations de la dynamic" Acta Math.,Vol.13, 5-270.
4. Liapounoff, M.A., (1907)." Probleme general de stabilite du mouvement" Ann. Sci. Univ. Toulouse, Ser 2, Vol.9, 203-204.
5. Hamel, G., (1913)." Uber die lineare Differentialgleichungen zweiter Ordnung periodischen Koeffizienten" Math. Ann. Bd.73, 371-412.
6. Haupt, O., (1919)." Uber lineare homogene Differentialgleichungen 2.Ordnung periodischen Koeffizienten" Math. Ann. Bd.79, 278-285.
7. Bloch, F., (1928)." Uber die Quantenmechanic der Elekronen in Kristallgitternlineare " Vol.52, 555-600.
8. Kramers, H.A., (1935)." Das Eigenwertprobleme in eindimensionalen periodischen Kraftfeldern" Physica Vol.2, 483-490.
9. Krein, M.G., (1955)." On certain problems on the maximum and minimum characteristic values and on the Lyapunov zones of stability" Amer. Math.Translations, Ser 2 Vol.1, 163-187.
10. Titcmarsh, E.C., (1950)." Eigenfunction problems with periodic potentials" Proc. Roy. Soc.Vol.203, 501-514.
11. Hochstadt, H., (1963)." Function theoretic properties of the discriminant of Hill's equation" Math. Z. Bd.82, 237-242.
12. Hochstadt, H., (1966)." On the determination of a Hill's equation from its spectrum I,II." Arc. Rat Mech. Anal. Vol. $19(1965$) 353-362 , Vol.23, 237-238.
13. Rofe-Beketov, F.S., (1963)," The spectrum of non-selfadjoint differential operators with periodic coefficients" Soviet Math. Vol.4, 1563-156
14. Magnus, W. and Winkler, S., (1966)." Hill's equation" Newyork Interscience Wiley
15. Eastham, M.S.P., (1973)." The spectral theory of periodics differential equations" Edinburgh and London :Scottish Academic Press
16. Novikov, S.P., (1975)." The periodic problem for the Korteweg-de Vries equation" Funct. Anal. Appl. Vol. 8 No.3, 236-246.
17. Marchenko, V.A. and Ostrovskii, I.V., (1975)." A characterization of the spectrum of Hill's operator" Math. USSR Sb., Vol. 26 No.4, 493-554.
18. Mckean, H. and Van Moerbeke, P., (1975)." The spectrum of Hill's equation" Invent Math. Vol. 30 No.3, 217-274.
19. Trubowitz, E., (1977)." The inverse problem for periodic potentials" Comm. Pure Appl. Math. Vol.30, 321-337.
20. Guseniov, G.S., (1984)." On the quadratic pencil of Sturm-Liouville operators with periodic coefficients" Vestnik Moskov Univ. Ser I Math. Mekh. No.3, 14-21.
21. Guseniov, G.S., (1985)." On the spectral analysis of a qudratic pencil of Sturm-Liouville operators" Soviet Math. Dokl. Vol.32 No.3, 859-862.
22. Guseniov, G.S., (1985)," Spectrum and eigen function expansion for a qudratic pencil of Sturm-Liouville operators with periodic coefficients" Spectral Theory of Sturm-Liouville operators and Its Appl. Vol.6, 56-97.
23. Kreyszig, E., (1978)." Introductory Functional Analysis with Applications" Newyork.
