• icon+90(535) 849 84 68
  • iconnwsa.akademi@hotmail.com
  • icon Fýrat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-10605-5779
  • Article Type : Derleme
  • Publication Number : 1A0501
  • Page Number : 129-147
  • Doi : 10.12739/NWSA.2025.20.4.1A0501
  • Abstract Reading : 120
  • Download : 28
  • Atýf Sayýsý : 0
  • Share :

  • PDF Download

Issue Details

  • Year : 2025
  • Volume : 20
  • Issue : 4
  • Number of Articles Published : 6
  • Published Date : 1.10.2025

Cover Download Context Page Download
Engineering Sciences

Serial Number : 1A
ISSN No. : 1308-7231
Release Interval (in a Year) : 4 Issues

ARTIFICIAL INTELLIGENCE IN BREAST CANCER DIAGNOSIS: CURRENT APPLICATIONS, CHALLENGES, AND THE ROLE OF EXPLAINABLE AI

Maral A. Mustafa1 , O. Ayhan Erdem2 , Esra Söđüt3

Breast cancer is the most commonly diagnosed cancer in women worldwide, and its prevalence is constantly increasing despite significant advancements in early diagnosis and personalised treatment. Nevertheless, current workflows for diagnostic interventions face challenges such as overdiagnosis in low-risk populations, increasing workloads for radiologists and pathologists, and inconsistent interpretation of imaging and pathological study findings. Artificial intelligence (AI) has proven to be an effective solution to these issues by enhancing image analysis, automating labour-intensive processes, and facilitating clinical decision-making. This paper presents a narrative review of recent AI implementations in breast cancer screening and diagnosis, including malignancy detection and classification, tumour segmentation, molecular subtype prediction, and recurrence or metastatic risk assessment. Data sources in both imaging and non-imaging domains are analysed, including mammography, ultrasound, magnetic resonance imaging (MRI), histopathology, clinical variables, and multimodal data integration. The reviewed articles also identify explainable artificial intelligence (XAI) methods, such as SHAP, Grad-CAM, and LIME, as being key to improving transparency, interpretability, and clinician confidence in AI-assisted systems. Overall, the current evidence suggests that AI-based tools have the potential to enhance diagnostic accuracy, reduce inter-observer variability, and facilitate personalised risk evaluation and treatment planning. However, there are still multiple obstacles to the widespread clinical implementation of AI in breast cancer care, such as the heterogeneity of datasets, a lack of external and prospective validation, interpretability issues, and constraints based on real-world application. Therefore, future studies must focus on creating more and better-quality data, establishing standard assessment guidelines and solid explainability models, and conducting future clinical trials, in order to enable the safe, productive and fair integration of AI into routine breast cancer care.

Keywords
Screening, Explainable AI, Malignancy Classification, Recurrence Rrediction, Image Segmentation,

Details
   

Authors

Maral A. Mustafa (1)

maralanwer@ntu.edu.iq | 0000-0002-0601-3457

O. Ayhan Erdem (2)

Gazi University
ayerdem@gazi.edu.tr | 0000-0001-7761-1078

Esra Söđüt (3) (Corresponding Author)

Gazi Üniversitesi Teknoloji Fakültesi Bilgisayar Mühendisliđi Bölümü
esrasogut@gazi.edu.tr | 0000-0002-0051-2271

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al., (2022). Breast cancer statistics, 2022. CA Cancer J Clin, 72:524–541.

[2] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al., (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71:209–249.

[3] Taylor, C., McGale, P., Probert, J., Broggio, J., Charman, J., Darby, S.C., et al., (2023). Breast cancer mortality in 500 000 women with early invasive breast cancer diagnosed in England, 1993–2015: population based observational cohort study. BMJ, 381:e074684.

[4] Marmot, M.G., Altman, D.G., Cameron, D.A., Dewar, J.A., Thompson, S.G., and Wilcox, M., (2013). The benefits and harms of breast cancer screening: an independent review. Br J Cancer, 108:2205–2240.

[5] [The Royal College of Radiologists, (2022). RCR Clinical Radiology Workforce Census 2022.

[6] [Metter, D.M., Colgan, T.J., Leung, S.T., Timmons, C.F., and Park, J.Y., (2019). Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA Netw Open, 2:e194337.

[7] Connor, S.J., Lim, Y.Y., Tate, C., Entwistle, H., Morris, J., Whiteside, S., et al., (2012). A comparison of reading times in full-field digital mammography and digital breast tomosynthesis. Breast Cancer Res, 14:P26.

[8] Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A. N., et al., (2015). Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA, 313:1122–1132.

[9] Acs, B., Fredriksson, I., Rönnlund, C., Hagerling, C., Ehinger, A., Kovács, A., et al., (2021). Variability in breast cancer biomarker assessment and the effect on oncological treatment decisions: a nationwide 5-year population-based study. Cancers (Basel), 13:1166.

[10] Fernandez, A.I., Liu, M., Bellizzi, A., Brock, J., Fadare, O., Hanley, K., et al., (2022). Examination of low ERBB2 protein expression in breast cancer tissue. JAMA Oncol, 8:1–4.

[11] [11] Kim, S.H., Lee, E.H., Jun, J.K., Kim, Y.M., Chang, Y.W., Lee, J.H., et al., (2019). Interpretive performance and inter-observer agreement on digital mammography test sets. Korean J Radiol, 20:218–224.

[12] Whitney, J., Corredor, G., Janowczyk, A., Ganesan, S., Doyle, S., Tomaszewski, J., et al., (2018). Quantitative nuclear histomorphometry predicts Oncotype DX risk categories for early stage ER+ breast cancer. BMC Cancer, 18:610.

[13] Rajpurkar, P., Chen, E., Banerjee, O., and Topol, E.J., (2022). AI in health and medicine. Nat Med, 28:31–38.

[14] Kann, B.H., Hosny, A., and Aerts, H.J., (2021). Artificial intelligence for clinical oncology. Cancer Cell, 39:916–927.

[15] Niazi, M.K., Parwani, A.V., and Gurcan, M.N., (2019). Digital pathology and artificial intelligence. Lancet Oncol, 20:e253–e261.

[16] Hickman, S.E., Baxter, G.C., and Gilbert, F.J., (2021). Adoption of artificial intelligence in breast imaging: evaluation, ethical constraints and limitations. Br J Cancer, 125:15–22.

[17] Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I. T., et al., (2019). Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol, 30:1194–1220.

[18] Gradishar, W.J., Moran, M.S., Abraham, J., Aft, R., Agnese, D., Allison, K. H., et al., (2022). Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 20:691–722.

[19] Saslow, D., Boetes, C., Burke, W., Harms, S., Leach, M.O., Lehman, C.D., et al., (2007). American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin, 57:75–89.

[20] Tice, J.A., Miglioretti, D.L., Li, C.S., Vachon, C.M., Gard, C.C., and Kerlikowske, K., (2015). Breast density and benign breast disease: risk assessment to identify women at high risk of breast cancer. J Clin Oncol, 33:3137–3143.

[21] Gail, M. H., (2020). Choosing breast cancer risk models: importance of independent validation. J Natl Cancer Inst, 112:433–435.

[22] Holm, J., Li, J., Darabi, H., Eklund, M., Eriksson, M., Humphreys, K., et al., (2016). Associations of breast cancer risk prediction tools with tumor characteristics and metastasis. J Clin Oncol, 34:251–258.

[23] Gilbert, F.J., Tucker, L., Gillan, M.G., Willsher, P., Cooke, J., Duncan, K. A., et al., (2015). The TOMMY trial: a comparison of tomosynthesis with digital mammography in the UK NHS Breast Screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess, 19:i–ixxv, 1–136.

[24] Waite, S., Scott, J., Gale, B., Fuchs, T., Kolla, S., and Reede, D., (2017). Interpretive error in radiology. American Journal of Roentgenology, 208(4):739-749.

[25] Redondo, A., Comas, M., Maciŕ, F., Ferrer, F., Murta-Nascimento, C., Maristany, M. T., et al., (2012). Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Br J Radiol, 85:1465–1470.

[26] Rai, H.M., (2024). Cancer detection and segmentation using machine learning and deep learning techniques: a review. Multimed Tools Appl, 83:27001–27035.

[27] Liu, Z., Lin, F., Huang, J., Wu, X., Wen, J., Wang, M., et al., (2023). A classifier-combined method for grading breast cancer based on Dempster-Shafer evidence theory. Quant Imaging Med Surg, 13:3288.

[28] Kumaraswamy, E., Kumar, S., and Sharma, M., (2023). An invasive ductal carcinomas breast cancer grade classification using an ensemble of convolutional neural networks. Diagnostics, 13:1977.

[29] Huang, Y., Zeng, P., and Zhong, C., (2024). Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning. BMC Bioinformatics, 25:132.

[30] Guo, H., Li, M., Liu, H., Chen, X., Cheng, Z., Li, X., et al., (2024). Multi-threshold image segmentation based on an improved salp swarm algorithm: case study of breast cancer pathology images. Comput Biol Med, 168:107769.

[31] Rajoub, B., Qusa, H., Abdul-Rahman, H., and Mohamed, H., (2024). Segmentation of breast tissue structures in mammographic images. In: Artificial Intelligence Image Processing in Medical Imaging, pp. 115–146.

[32] Soliman, A., Li, Z., and Parwani, A.V., (2024). Artificial intelligence’s impact on breast cancer pathology: a literature review. Diagn Pathol, 19:1–18.

[33] Gallagher, W.M., McCaffrey, C., Jahangir, C., Murphy, C., Burke, C., and Rahman, A., (2024). Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer. Expert Rev Mol Diagn, 24:363–377.

[34] Lundberg, S.M., and Lee, S.-I., (2017). A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, 30.

[35] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626.

[36] Ribeiro, M.T., Singh, S., and Guestrin, C., (2016). Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144.

[37] Sweetlin, E.J., and Saudia, S., (2021). A review of machine learning algorithms on different breast cancer datasets. In: International Conference on Big Data, Machine Learning, and Applications, pp. 659–673. Springer.

[38] Heiliger, L., Sekuboyina, A., Menze, B., Egger, J., and Kleesiek, J., (2023). Beyond medical imaging – a review of multimodal deep learning in radiology. Authorea.

[39] Laokulrath, N., Gudi, M. A., Deb, R., Ellis, I.O., and Tan, P.H., (2024). Invasive breast cancer reporting guidelines: ICCR, CAP, RCPath, RCPA datasets and future directions. Diagn Histopathol, 30:87–99.

[40] Brancati, N., Anniciello, A.M., Pati, P., Riccio, D., Scognamiglio, G., Jaume, G., et al., (2022). BRACS: a dataset for breast carcinoma subtyping in HE histology images. Database, 2022:baac093.

[41] Aksac, A., Demetrick, D.J., Ozyer, T., and Alhajj, R., (2019). BReCaHaD: a dataset for breast cancer histopathological annotation and diagnosis. BMC Res Notes, 12:1–3.

[42] The Cancer Genome Atlas (TCGA), (2023). Genomic Data Commons Data Portal (GDC), TCGA-BRCA. Available at: https://portal.gdc.cancer.gov/projects/TCGA-BRCA (accessed July 07, 2023).

[43] Martel, A.L., Nofech-Mozes, S., Salama, S., Akbar, S., and Peikari, M., (2019). Assessment of residual breast cancer cellularity after neoadjuvant chemotherapy using digital pathology. Cancer Imaging Arch.

[44] Huang, Z., Shao, W., Han, Z., Alkashash, A.M., De la Sancha, C., Parwani, A.V., et al., (2023). Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images. NPJ Precis Oncol, 7:14.

[45] The Genotype-Tissue Expression (GTEx) Project, (2023). GTEx portal. Available at: https://gtexportal.org/home/histologyPage (accessed July 07, 2023).

[46] National Cancer Institute Clinical Proteomic Tumor Analysis Consortium, (2020). The Clinical Proteomic Tumor Analysis Consortium breast invasive carcinoma collection (CPTAC-BRCA). The Cancer Imaging Archive. Available at: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748 (accessed July 07, 2023).

[47] van Winkel, S.L., Rodriguez-Ruiz, A., Appelman, L., Gubern-Merida, A., Karssemeijer, N., Teuwen, J., Wanders, A. J., Sechopoulos, I., and Mann, R. M., (2021). Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study. Eur Radiol, 31(11):8682–8691.

[48] Yan, R., Zhang, F., Rao, X., Lv, Z., Li, J., Zhang, L., et al., (2021). Richer fusion network for breast cancer classification based on multimodal data. BMC Med Inform Decis Mak, 21:1–15.

[49] Alam, T., Shia, W.C., Hsu, F.R., and Hassan, T., (2023). Improving breast cancer detection and diagnosis through semantic segmentation using the UNet3+ deep learning framework. Biomedicines, 11:1536.

[50] Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L., et al., (2017). Curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data, 4:1–9.

[51] Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., and Cardoso, J.S., (2012). INbreast: toward a full-field digital mammographic database. Acad Radiol, 19:236–248.

[52] Prinzi, F., Insalaco, M., Orlando, A., Gaglio, S., and Vitabile, S., (2024). A YOLO-based model for breast cancer detection in mammograms. Cognit Comput, 16:107–120.

[53] Choi, J.M., and Chae, H., (2023). MoBRCa-Net: a breast cancer subtype classification framework based on multi-omics attention neural networks. BMC Bioinformatics, 24:169.

[54] Spanhol, F.A., Oliveira, L.S., Petitjean, C., and Heutte, L., (2015). A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng, 63:1455–1462.

[55] Srikantamurthy, M.M., Rallabandi, V.S., Dudekula, D.B., Natarajan, S., and Park, J., (2023). Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Med Imaging, 23:19.

[56] DataBioX, (2024). DataBioX datasets. Available at: https://databiox.com/datasets/ (accessed June 02, 2024).

[57] Al-Dhabyani, W., Gomaa, M., Khaled, H., and Fahmy, A., (2020). Dataset of breast ultrasound images. Data Brief, 28:104863.

[58] Lekamlage, C.D., Afzal, F., Westerberg, E., and Cheddad, A., (2020). Mini-DDSM: mammography-based automatic age estimation. In: 2020 3rd International Conference on Digital Medicine and Image Processing, pp. 1–6. ACM.

[59] Sahu, A., Das, P.K., and Meher, S., (2023). High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control, 80:104292.

[60] Guo, D., Lu, C., Chen, D., Yuan, J., Duan, Q., Xue, Z., et al., (2024). A multimodal breast cancer diagnosis method based on knowledge-augmented deep learning. Biomed Signal Process Control, 90:105843.

[61] Hussein, M., Elnahas, M., and Keshk, A., (2024). A framework for predicting breast cancer recurrence. Expert Syst Appl, 240:122641.

[62] Kendall, E.J., Barnett, M.G., and Chytyk-Praznik, K., (2013). Automatic detection of anomalies in screening mammograms. BMC Med Imaging, 13:1–11.

[63] Ahmed, L., Iqbal, M.M., Aldabbas, H., Khalid, S., Saleem, Y., and Saeed, S., (2023). Images data practices for semantic segmentation of breast cancer using deep neural network. J Ambient Intell Humaniz Comput, 14:15227–1543.

[64] Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., and Zerhouni, N., (2021). A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech Biomed Eng Imaging Vis, 9:131–145.

[65] [Parshionikar, S., and Bhattacharyya, D., (2024). An enhanced multi-scale deep convolutional orchard capsule neural network for multi-modal breast cancer detection. Healthc Anal, 5:100298.

[66] Sivamurugan, J. and Sureshkumar, G., (2023). Applying dual models on optimized LSTM with U-Net segmentation for breast cancer diagnosis using mammogram images. Artif Intell Med, 143:102626.

[67] Liu, H., Shi, Y., Li, A., and Wang, M., (2024). Multi-modal fusion network with intra and inter-modality attention for prognosis prediction in breast cancer. Comput Biol Med, 168:107796.

[68] Paulo, S., (2017). Breast ultrasound image. Mendeley Data.

[69] Raza, A., Ullah, N., Khan, J.A., Assam, M., Guzzo, A., and Aljuaid, H., (2023). DeepBreastCancerNet: a novel deep learning model for breast cancer detection using ultrasound images. Appl Sci, 13:2082.

[70] Murata, T., Yoshida, M., Shiino, S., Ogawa, A., Watase, C., Satomi, K., et al., (2023). A prediction model for distant metastasis after isolated locoregional recurrence of breast cancer. Breast Cancer Res Treat, 199:57–66.

[71] Sahu, Y., Tripathi, A., Gupta, R.K., Gautam, P., Pateriya, R.K., Gupta, A., et al., (2023). Computer aided diagnosis of breast cancer using histogram k-means segmentation technique. Multimed Tools Appl, 82:14055–14075.

[72] Pacile, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., and Fillard, P., (2020). Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool. Radiol Artif Intell, 2(6):e190208.

[73] Conant, E.F., Toledano, A.Y., Periaswamy, S., Fotin, S.V., Go, J., Boatsman, J.E., and Hoffmeister, J.W., (2019). Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell, 1(4):e180096.

[74] Rodríguez-Ruiz, A., Krupinski, E., Mordang, J.-J., Schilling, K., Heywang-Köbrunner, S.H., Sechopoulos, I., and Mann, R.M., (2019). Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology, 290(2):305–314.

[75] Dembrower, K., Crippa, A., Colon, E., Eklund, M., and Strand, F., (2023). Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit Health, 5:xxx–xxx.

[76] Larsen, M., Aglen, C.F., Hoff, S.R., Lund-Hanssen, H., and Hofvind, S., (2022). Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations. Eur Radiol, 32(12):8238–8246.

[77] Sharma, N., Ng, A.Y., James, J.J., Khara, G., Ambrozay, C.C., Austin, C.C., Fox, G., Glocker, B., Heindl, A., et al., (2023). Multi-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammograms. BMC Cancer, 23(1):1–13.

[78] Leibig, C., Brehmer, M., Bunk, S., Byng, D., Pinker, K., and Umutlu, L., (2022). Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis. Lancet Digit Health, 4(7):e507–e519.

[79] Lĺng, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogberg, C., Sartor, H., Hofvind, S., Andersson, I., and Rosso, A., (2023). Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol, 24(8):936–944.

[80] [Lĺng, K., Dustler, M., Dahlblom, V., Ĺkesson, A., Andersson, I., and Zackrisson, S., (2021). Identifying normal mammograms in a large screening population using artificial intelligence. Eur Radiol, 31:1687–1692.

[81] Raya-Povedano, J.L., Romero-Martín, S., Elías-Cabot, E., Gubern-Merida, A., Rodríguez-Ruiz, A., and Álvarez-Benito, M., (2021). AI-based strategies to reduce workload in breast cancer screening with mammography and tomosynthesis: a retrospective evaluation. Radiology, 300(1):57–65.

[82] Shoshan, Y., Bakalo, R., Gilboa-Solomon, F., Ratner, V., Barkan, E., Ozery-Flato, M., Amit, M., Khapun, D., Ambinder, E.B., Oluyemi, E.T., et al., (2022). Artificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesis. Radiology, 303(1):69–77.

[83] Lĺng, K., (2024). Cancer detection in relation to type and stage in the randomised Mammography Screening with Artificial Intelligence trial (MASAI). In: European Congress of Radiology, Vienna, Austria.

[84] Lauritzen, A.D., Rodríguez-Ruiz, A., von Euler-Chelpin, M.C., Lynge, E., Vejborg, I., Nielsen, M., Karssemeijer, N., and Lillholm, M., (2022). An artificial intelligence–based mammography screening protocol for breast cancer: outcome and radiologist workload. Radiology, 304(1):41–49.

[85] Dembrower, K., Wĺhlin, E., Liu, Y., Salim, M., Smith, K., Lindholm, P., Eklund, M., and Strand, F., (2020). Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health, 2(9):e468–e474.