References
[1] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al., (2022). Breast cancer statistics, 2022. CA Cancer J Clin, 72:524–541.
[2] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al., (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71:209–249.
[3] Taylor, C., McGale, P., Probert, J., Broggio, J., Charman, J., Darby, S.C., et al., (2023). Breast cancer mortality in 500 000 women with early invasive breast cancer diagnosed in England, 1993–2015: population based observational cohort study. BMJ, 381:e074684.
[4] Marmot, M.G., Altman, D.G., Cameron, D.A., Dewar, J.A., Thompson, S.G., and Wilcox, M., (2013). The benefits and harms of breast cancer screening: an independent review. Br J Cancer, 108:2205–2240.
[5] [The Royal College of Radiologists, (2022). RCR Clinical Radiology Workforce Census 2022.
[6] [Metter, D.M., Colgan, T.J., Leung, S.T., Timmons, C.F., and Park, J.Y., (2019). Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA Netw Open, 2:e194337.
[7] Connor, S.J., Lim, Y.Y., Tate, C., Entwistle, H., Morris, J., Whiteside, S., et al., (2012). A comparison of reading times in full-field digital mammography and digital breast tomosynthesis. Breast Cancer Res, 14:P26.
[8] Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A. N., et al., (2015). Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA, 313:1122–1132.
[9] Acs, B., Fredriksson, I., Rönnlund, C., Hagerling, C., Ehinger, A., Kovács, A., et al., (2021). Variability in breast cancer biomarker assessment and the effect on oncological treatment decisions: a nationwide 5-year population-based study. Cancers (Basel), 13:1166.
[10] Fernandez, A.I., Liu, M., Bellizzi, A., Brock, J., Fadare, O., Hanley, K., et al., (2022). Examination of low ERBB2 protein expression in breast cancer tissue. JAMA Oncol, 8:1–4.
[11] [11] Kim, S.H., Lee, E.H., Jun, J.K., Kim, Y.M., Chang, Y.W., Lee, J.H., et al., (2019). Interpretive performance and inter-observer agreement on digital mammography test sets. Korean J Radiol, 20:218–224.
[12] Whitney, J., Corredor, G., Janowczyk, A., Ganesan, S., Doyle, S., Tomaszewski, J., et al., (2018). Quantitative nuclear histomorphometry predicts Oncotype DX risk categories for early stage ER+ breast cancer. BMC Cancer, 18:610.
[13] Rajpurkar, P., Chen, E., Banerjee, O., and Topol, E.J., (2022). AI in health and medicine. Nat Med, 28:31–38.
[14] Kann, B.H., Hosny, A., and Aerts, H.J., (2021). Artificial intelligence for clinical oncology. Cancer Cell, 39:916–927.
[15] Niazi, M.K., Parwani, A.V., and Gurcan, M.N., (2019). Digital pathology and artificial intelligence. Lancet Oncol, 20:e253–e261.
[16] Hickman, S.E., Baxter, G.C., and Gilbert, F.J., (2021). Adoption of artificial intelligence in breast imaging: evaluation, ethical constraints and limitations. Br J Cancer, 125:15–22.
[17] Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I. T., et al., (2019). Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol, 30:1194–1220.
[18] Gradishar, W.J., Moran, M.S., Abraham, J., Aft, R., Agnese, D., Allison, K. H., et al., (2022). Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 20:691–722.
[19] Saslow, D., Boetes, C., Burke, W., Harms, S., Leach, M.O., Lehman, C.D., et al., (2007). American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin, 57:75–89.
[20] Tice, J.A., Miglioretti, D.L., Li, C.S., Vachon, C.M., Gard, C.C., and Kerlikowske, K., (2015). Breast density and benign breast disease: risk assessment to identify women at high risk of breast cancer. J Clin Oncol, 33:3137–3143.
[21] Gail, M. H., (2020). Choosing breast cancer risk models: importance of independent validation. J Natl Cancer Inst, 112:433–435.
[22] Holm, J., Li, J., Darabi, H., Eklund, M., Eriksson, M., Humphreys, K., et al., (2016). Associations of breast cancer risk prediction tools with tumor characteristics and metastasis. J Clin Oncol, 34:251–258.
[23] Gilbert, F.J., Tucker, L., Gillan, M.G., Willsher, P., Cooke, J., Duncan, K. A., et al., (2015). The TOMMY trial: a comparison of tomosynthesis with digital mammography in the UK NHS Breast Screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess, 19:i–ixxv, 1–136.
[24] Waite, S., Scott, J., Gale, B., Fuchs, T., Kolla, S., and Reede, D., (2017). Interpretive error in radiology. American Journal of Roentgenology, 208(4):739-749.
[25] Redondo, A., Comas, M., Maciŕ, F., Ferrer, F., Murta-Nascimento, C., Maristany, M. T., et al., (2012). Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Br J Radiol, 85:1465–1470.
[26] Rai, H.M., (2024). Cancer detection and segmentation using machine learning and deep learning techniques: a review. Multimed Tools Appl, 83:27001–27035.
[27] Liu, Z., Lin, F., Huang, J., Wu, X., Wen, J., Wang, M., et al., (2023). A classifier-combined method for grading breast cancer based on Dempster-Shafer evidence theory. Quant Imaging Med Surg, 13:3288.
[28] Kumaraswamy, E., Kumar, S., and Sharma, M., (2023). An invasive ductal carcinomas breast cancer grade classification using an ensemble of convolutional neural networks. Diagnostics, 13:1977.
[29] Huang, Y., Zeng, P., and Zhong, C., (2024). Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning. BMC Bioinformatics, 25:132.
[30] Guo, H., Li, M., Liu, H., Chen, X., Cheng, Z., Li, X., et al., (2024). Multi-threshold image segmentation based on an improved salp swarm algorithm: case study of breast cancer pathology images. Comput Biol Med, 168:107769.
[31] Rajoub, B., Qusa, H., Abdul-Rahman, H., and Mohamed, H., (2024). Segmentation of breast tissue structures in mammographic images. In: Artificial Intelligence Image Processing in Medical Imaging, pp. 115–146.
[32] Soliman, A., Li, Z., and Parwani, A.V., (2024). Artificial intelligence’s impact on breast cancer pathology: a literature review. Diagn Pathol, 19:1–18.
[33] Gallagher, W.M., McCaffrey, C., Jahangir, C., Murphy, C., Burke, C., and Rahman, A., (2024). Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer. Expert Rev Mol Diagn, 24:363–377.
[34] Lundberg, S.M., and Lee, S.-I., (2017). A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, 30.
[35] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626.
[36] Ribeiro, M.T., Singh, S., and Guestrin, C., (2016). Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144.
[37] Sweetlin, E.J., and Saudia, S., (2021). A review of machine learning algorithms on different breast cancer datasets. In: International Conference on Big Data, Machine Learning, and Applications, pp. 659–673. Springer.
[38] Heiliger, L., Sekuboyina, A., Menze, B., Egger, J., and Kleesiek, J., (2023). Beyond medical imaging – a review of multimodal deep learning in radiology. Authorea.
[39] Laokulrath, N., Gudi, M. A., Deb, R., Ellis, I.O., and Tan, P.H., (2024). Invasive breast cancer reporting guidelines: ICCR, CAP, RCPath, RCPA datasets and future directions. Diagn Histopathol, 30:87–99.
[40] Brancati, N., Anniciello, A.M., Pati, P., Riccio, D., Scognamiglio, G., Jaume, G., et al., (2022). BRACS: a dataset for breast carcinoma subtyping in HE histology images. Database, 2022:baac093.
[41] Aksac, A., Demetrick, D.J., Ozyer, T., and Alhajj, R., (2019). BReCaHaD: a dataset for breast cancer histopathological annotation and diagnosis. BMC Res Notes, 12:1–3.
[42] The Cancer Genome Atlas (TCGA), (2023). Genomic Data Commons Data Portal (GDC), TCGA-BRCA. Available at: https://portal.gdc.cancer.gov/projects/TCGA-BRCA (accessed July 07, 2023).
[43] Martel, A.L., Nofech-Mozes, S., Salama, S., Akbar, S., and Peikari, M., (2019). Assessment of residual breast cancer cellularity after neoadjuvant chemotherapy using digital pathology. Cancer Imaging Arch.
[44] Huang, Z., Shao, W., Han, Z., Alkashash, A.M., De la Sancha, C., Parwani, A.V., et al., (2023). Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images. NPJ Precis Oncol, 7:14.
[45] The Genotype-Tissue Expression (GTEx) Project, (2023). GTEx portal. Available at: https://gtexportal.org/home/histologyPage (accessed July 07, 2023).
[46] National Cancer Institute Clinical Proteomic Tumor Analysis Consortium, (2020). The Clinical Proteomic Tumor Analysis Consortium breast invasive carcinoma collection (CPTAC-BRCA). The Cancer Imaging Archive. Available at: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748 (accessed July 07, 2023).
[47] van Winkel, S.L., Rodriguez-Ruiz, A., Appelman, L., Gubern-Merida, A., Karssemeijer, N., Teuwen, J., Wanders, A. J., Sechopoulos, I., and Mann, R. M., (2021). Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study. Eur Radiol, 31(11):8682–8691.
[48] Yan, R., Zhang, F., Rao, X., Lv, Z., Li, J., Zhang, L., et al., (2021). Richer fusion network for breast cancer classification based on multimodal data. BMC Med Inform Decis Mak, 21:1–15.
[49] Alam, T., Shia, W.C., Hsu, F.R., and Hassan, T., (2023). Improving breast cancer detection and diagnosis through semantic segmentation using the UNet3+ deep learning framework. Biomedicines, 11:1536.
[50] Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L., et al., (2017). Curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data, 4:1–9.
[51] Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., and Cardoso, J.S., (2012). INbreast: toward a full-field digital mammographic database. Acad Radiol, 19:236–248.
[52] Prinzi, F., Insalaco, M., Orlando, A., Gaglio, S., and Vitabile, S., (2024). A YOLO-based model for breast cancer detection in mammograms. Cognit Comput, 16:107–120.
[53] Choi, J.M., and Chae, H., (2023). MoBRCa-Net: a breast cancer subtype classification framework based on multi-omics attention neural networks. BMC Bioinformatics, 24:169.
[54] Spanhol, F.A., Oliveira, L.S., Petitjean, C., and Heutte, L., (2015). A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng, 63:1455–1462.
[55] Srikantamurthy, M.M., Rallabandi, V.S., Dudekula, D.B., Natarajan, S., and Park, J., (2023). Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Med Imaging, 23:19.
[56] DataBioX, (2024). DataBioX datasets. Available at: https://databiox.com/datasets/ (accessed June 02, 2024).
[57] Al-Dhabyani, W., Gomaa, M., Khaled, H., and Fahmy, A., (2020). Dataset of breast ultrasound images. Data Brief, 28:104863.
[58] Lekamlage, C.D., Afzal, F., Westerberg, E., and Cheddad, A., (2020). Mini-DDSM: mammography-based automatic age estimation. In: 2020 3rd International Conference on Digital Medicine and Image Processing, pp. 1–6. ACM.
[59] Sahu, A., Das, P.K., and Meher, S., (2023). High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control, 80:104292.
[60] Guo, D., Lu, C., Chen, D., Yuan, J., Duan, Q., Xue, Z., et al., (2024). A multimodal breast cancer diagnosis method based on knowledge-augmented deep learning. Biomed Signal Process Control, 90:105843.
[61] Hussein, M., Elnahas, M., and Keshk, A., (2024). A framework for predicting breast cancer recurrence. Expert Syst Appl, 240:122641.
[62] Kendall, E.J., Barnett, M.G., and Chytyk-Praznik, K., (2013). Automatic detection of anomalies in screening mammograms. BMC Med Imaging, 13:1–11.
[63] Ahmed, L., Iqbal, M.M., Aldabbas, H., Khalid, S., Saleem, Y., and Saeed, S., (2023). Images data practices for semantic segmentation of breast cancer using deep neural network. J Ambient Intell Humaniz Comput, 14:15227–1543.
[64] Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., and Zerhouni, N., (2021). A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech Biomed Eng Imaging Vis, 9:131–145.
[65] [Parshionikar, S., and Bhattacharyya, D., (2024). An enhanced multi-scale deep convolutional orchard capsule neural network for multi-modal breast cancer detection. Healthc Anal, 5:100298.
[66] Sivamurugan, J. and Sureshkumar, G., (2023). Applying dual models on optimized LSTM with U-Net segmentation for breast cancer diagnosis using mammogram images. Artif Intell Med, 143:102626.
[67] Liu, H., Shi, Y., Li, A., and Wang, M., (2024). Multi-modal fusion network with intra and inter-modality attention for prognosis prediction in breast cancer. Comput Biol Med, 168:107796.
[68] Paulo, S., (2017). Breast ultrasound image. Mendeley Data.
[69] Raza, A., Ullah, N., Khan, J.A., Assam, M., Guzzo, A., and Aljuaid, H., (2023). DeepBreastCancerNet: a novel deep learning model for breast cancer detection using ultrasound images. Appl Sci, 13:2082.
[70] Murata, T., Yoshida, M., Shiino, S., Ogawa, A., Watase, C., Satomi, K., et al., (2023). A prediction model for distant metastasis after isolated locoregional recurrence of breast cancer. Breast Cancer Res Treat, 199:57–66.
[71] Sahu, Y., Tripathi, A., Gupta, R.K., Gautam, P., Pateriya, R.K., Gupta, A., et al., (2023). Computer aided diagnosis of breast cancer using histogram k-means segmentation technique. Multimed Tools Appl, 82:14055–14075.
[72] Pacile, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., and Fillard, P., (2020). Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool. Radiol Artif Intell, 2(6):e190208.
[73] Conant, E.F., Toledano, A.Y., Periaswamy, S., Fotin, S.V., Go, J., Boatsman, J.E., and Hoffmeister, J.W., (2019). Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell, 1(4):e180096.
[74] Rodríguez-Ruiz, A., Krupinski, E., Mordang, J.-J., Schilling, K., Heywang-Köbrunner, S.H., Sechopoulos, I., and Mann, R.M., (2019). Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology, 290(2):305–314.
[75] Dembrower, K., Crippa, A., Colon, E., Eklund, M., and Strand, F., (2023). Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit Health, 5:xxx–xxx.
[76] Larsen, M., Aglen, C.F., Hoff, S.R., Lund-Hanssen, H., and Hofvind, S., (2022). Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations. Eur Radiol, 32(12):8238–8246.
[77] Sharma, N., Ng, A.Y., James, J.J., Khara, G., Ambrozay, C.C., Austin, C.C., Fox, G., Glocker, B., Heindl, A., et al., (2023). Multi-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammograms. BMC Cancer, 23(1):1–13.
[78] Leibig, C., Brehmer, M., Bunk, S., Byng, D., Pinker, K., and Umutlu, L., (2022). Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis. Lancet Digit Health, 4(7):e507–e519.
[79] Lĺng, K., Josefsson, V., Larsson, A.-M., Larsson, S., Hogberg, C., Sartor, H., Hofvind, S., Andersson, I., and Rosso, A., (2023). Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol, 24(8):936–944.
[80] [Lĺng, K., Dustler, M., Dahlblom, V., Ĺkesson, A., Andersson, I., and Zackrisson, S., (2021). Identifying normal mammograms in a large screening population using artificial intelligence. Eur Radiol, 31:1687–1692.
[81] Raya-Povedano, J.L., Romero-Martín, S., Elías-Cabot, E., Gubern-Merida, A., Rodríguez-Ruiz, A., and Álvarez-Benito, M., (2021). AI-based strategies to reduce workload in breast cancer screening with mammography and tomosynthesis: a retrospective evaluation. Radiology, 300(1):57–65.
[82] Shoshan, Y., Bakalo, R., Gilboa-Solomon, F., Ratner, V., Barkan, E., Ozery-Flato, M., Amit, M., Khapun, D., Ambinder, E.B., Oluyemi, E.T., et al., (2022). Artificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesis. Radiology, 303(1):69–77.
[83] Lĺng, K., (2024). Cancer detection in relation to type and stage in the randomised Mammography Screening with Artificial Intelligence trial (MASAI). In: European Congress of Radiology, Vienna, Austria.
[84] Lauritzen, A.D., Rodríguez-Ruiz, A., von Euler-Chelpin, M.C., Lynge, E., Vejborg, I., Nielsen, M., Karssemeijer, N., and Lillholm, M., (2022). An artificial intelligence–based mammography screening protocol for breast cancer: outcome and radiologist workload. Radiology, 304(1):41–49.
[85] Dembrower, K., Wĺhlin, E., Liu, Y., Salim, M., Smith, K., Lindholm, P., Eklund, M., and Strand, F., (2020). Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health, 2(9):e468–e474.