• icon+90(533) 652 66 86
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-12541-5686
  • Article Type : Araştırma Makalesi
  • Publication Number : 5A0218
  • Page Number : 128-141
  • Doi : 10.12739/NWSA.2024.19.4.5A0218
  • Abstract Reading : 17
  • Download : 8
  • Share :

  • PDF Download

Issue Details

  • Year : 2024
  • Volume : 19
  • Issue : 4
  • Number of Articles Published : 1
  • Published Date : 1.10.2024

Cover Download Context Page Download
Ecological Life Sciences

Serial Number : 5A
ISSN No. : 1308-7258
Release Interval (in a Year) : 4 Issues

DETERMINATION OF EUTROPHICATION AND INDICATOR SPECIES BASED ON SEDIMENT DEPTH IN RELATION TO DIATOM INFERRED WATER QUALITY DATA IN LAKE TÖDÜRGE

Fatma KÜÇÜK1 , Bülent ŞEN2

Lake Tödürge located in Sivas Province is one of the most characteristic lakes with its high alkalinity in Eastern Anatolia. The lake is well known for its characteristic high water quality. The present study aimed to investigate the paleolimnological past of Lake Tödürge in relation to changes in concentrations of total nitrogen (TN), total phosforus (TP), chlorophyll-a (Chl-a), and secchi depth (Secc) that occurred in past years. Diatom-inferred paleolimnological evidence is also studied and evaluated. Core samples were taken from the lake using the Kajak Gravity Corer. The 113-year history of Lake Tödürge was re-dated using the Constant Supply Rate model (CRS) in the dating of 210Pb. The TN, TP, chl-a, secchi depth, pH, and CaCO3 variables were reconstructed using weighted average (WA) transfer functions and modern analog techniques (MAT). Identifications and relative abundance of fossil/subfossil diatom species were made for each dated depth. A total of 104 diatom taxa belonging to 59 genera were identified. The relative abundance of diatom taxa was poor despite the high species diversity. Species diversity and relative abundance of species showed some variations in core samples dated between 2022 and 1909. Pantocsekiella comensis, Tetramophora Croatia, and Cymbopleura pyrenaica were found to be dominant diatom species in core samples. The relative abundance of the diatoms did not display considerable changes in the past 113 years. According to ecological assessments based on DI-TN, DI-TP, DI-Chl-a, and DI-Secc it has been determined that the lake has been eutrophic for 113 years.

Keywords
Paleolimnology, Fossil Diatom, Transfer Functions, Eutrophication, Lakes,

Details
   

Authors

Fatma KÜÇÜK (1) (Corresponding Author)

Fırat University
fatmakucuk161453@gmail.com | 0000-0003-0170-2760

Bülent ŞEN (2)

bulentsen23@gmail.com | 0000-0001-2345-6785

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Smol, J.P., (2002). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective (Second Edi). John Wiley and Sons.

[2] OECD, (1982). Eutrophication of waters. Monitoring, assessment and control, 154 pp. Paris.

[3] Bennion, H. and Simpson, G.L., (2011). The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. Journal of Paleolimnology, 45:469–488. https://doi:10.1007/s10933-010-9422-8

[4] Sayer, C.D., (2001). Problems with the application od diatom-total phosphorus transfer functions: examples from a shallow english lake. Freshwayer Biology, 46:743-757. https://doi:10.1046/j.1365-2427.2001.00714.x

[5] Anon, (2000). Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framwork for Community action in the field of water policy. Official Journal of the European Communities, 1–327.

[6] Bennion, H., Wunsam, S., and Schmidt, R., (1995). The validation of diatom-phosphorous transfer-functions- an example from Mondsee, Austria. Freshwater Biology, 34:271-283. https://doi:10.1111/j.1365-2427.1995.tb00887.x

[7] Juggins, S., Anderson, N.J., Ramstack Hobbs, J.M., and Heathcote, A.J., (2013). Reconstructing epilimnetic total phosphorous using diatoms: statistical and ecological constraints. Journal of Paleolimnology, 49:373-390. https://doi:10.1007/s10933-013-9678-x

[8] Potapova, M.G., Charles, D.F., Ponader, K.C., and Winter, D.M., (2004). Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia, 517:25–41. https://doi:10.1023/B:HYDR.0000027335.73651.ea

[9] Reavie, E.D. and Smol, J.P., (2001). Diatom-environmental rela tionships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. Journal of Paleolimnology, 25:25–42. https://doi:10.1023/A:1008123613298 .

[10] Fengyang, S., Shuying, Z., Yawen, F., Xinxin, L., and Hongkuan, H., (2020). Establishment of a diatom-total phosphorus transfer function for lakes on the Songnen Plain in northeast China. Journal of Oceanology and Limnology, 38:1771-1786. https://doi:10.1007/s00343-019-92235.

[11] Stoermer, E.F. and Smol, J.P., (1999). The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge.

[12] Cohen, A.S., (2003). Paleolimnology: The History and Evolution of Lake Systems. Published by Oxford University Press In, New York. https://doi.org/10.1093/oso/9780195133530.001.0001

[13] Huber-Pestalozzi, G., (1975). Das phytoplankton des süsswassers systematik und biologie, 2. Teil, Diatomeen. E. Schweizerbarth’sche Verlagsbuchhandlung (Nagele u. Obermiller), Stuttgart.

[14] Krammer, K. and Lange-Bertalot, H., (1986). Süsswasserflora von Mitteleuropa. Bd. 2/1. Bacillariophyceae: Naviculaceae. Gustav Fischer, Stuttgart, Germany.

[15] Krammer, K. and Lange-Bertalot, H., (1988). Süsswasserflora von Mitteleuropa. Bd. 2/2. Bacillariophyceae: Bacillariaceae, Epithmiaceae, Surirellaceae. Gustav Fischer, Stuttgart, Germany.

[16] Krammer, K. and Lange-Bertalot, H., (1991a). Süsswasserflora von Mitteleuropa. Bd. 2/3. Bacillariophyceae: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer, Stuttgart, Germany.

[17] Krammer, K. and Lange-Bertalot, H., (1991b). Süsswasserflora von Mitteleuropa. Bd. 2/4. Bacillariophyceae: Achnanthaceae. Gustav Fischer, Stuttgart, Germany.

[18] Guiry, M.D. and Guiry, G.M., (2021). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org

[19] Appleby, P.G. and Oldfield, F., (1983). The Assessmant of 210Pb Data From Sites with Varying Sediment Accumulation Rates. Hidrobiologia, 103, 29-35. https://doi.org/10.1016/j.quageo.2022.101255 .

[20] Juggins, S., (2022). C2 Version 1.8.0: Software for ecological and paleoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne. https://www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm

[21] Grimm, E., (2019). TILIA Software Programme Version 3.0.1. https://www.neotomadb.org/apps/tilia .

[22] Dufrêne, M. and Legendre, P., (1997). Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecological Monographs, 67:345-366. https://doi.org/10.1890/0012-9615 .

[23] McCune, B. and Mefford, M.J., (2011). PC-ORD for windows: multivariate analysis of ecological data, 6th edn. MjM Software, Gleneden Beach. https://www.wildblueberrymedia.net/pcord .

[24] Yaramaz, Ö., (19929. Su kalitesi. Ege Üniversitesi Su Ürünleri Yüksek Okulu Yayın No: 14, Bornova.

[25] Anonim, (2016). Yerüstü su kalitesi yönetimi yönetmeliği. 10 Ağustos 2016 tarih 29797 sayılı Resmî Gazete, Ankara. https://www.tarimorman.gov.tr

[26] Hustedt, F., (1938-1939). Systematische und ökologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra. Arch. Hydrobiol. Suppl., 15. 131-177, 187-295, 393-506, 638-790, 16:1-155, 274-394.

[27] Pokras, E.M. and Molfino, B., (1986). Oceanographic control of diatom abundances and species distributions in surface sediments of the tropical and southeast Atlantic. Marine Micropaleontology, 10(1-3):165-188. https://doi:10.1016/0377-8398(86)90028-9

[28] Winter, J.G. and Duthie, H.C., (2000). Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society, 19(1):32–49. https://doi:10.2307/1468280 .

[29] http://www.zara.gov.tr/todurge-golu

[30] Sıvacı, E.R., Dere, S., and Kılınc, S., (2007). Tödürge Gölünün (Sivas) epilitik diatom florasının mevsimsel değişimi. E.U. Journal of Fisheries & Aquatic Sciences. Cilt/Volume 24, Sayı/Issue (1-2):45–50. https://jfas.ege.edu.tr/

[31] Sıvacı, E.R., Kılınc, S., and Dere, S., (2007b). Seasonal changes in epipelic diatom and ıonic composition of a Karstic Lake, Todurge, in Central Anatolis, Turkey. International Journal of Botany, 3(2):196-201. https://doi:10.3923/ijb.2007.196.201

[32] Kılınc, S. and Sıvacı, E.R., (2001). A study on the past and present diatom flora of two Alkaline Lakes. Turkish Journal of Botany, 25:373-378. https://journals.tubitak.gov.tr/botany/vol25/iss6/2/

[33] Van Dam, H., Mertens, A., and Sinkeldam, J.A., (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28:117–133. https://doi:10.1007/BF02334251

[34] Denys, L., (1991). A check list of the diatoms in the Holocene deposits of the western Belgian coastal plain, with a survey of their apparent ecological requirements. II. Centrales. Professional Paper Belgische Geologische Dienst, 247:1-92. https://www.researchgate.net/publication/249331389

[35] Akbulut, A. and Dügel, M., (2008). Planctonic diatoms assemblages and their relationship to environmental variables in Lakes of Salt Lake Basin (Central Anatolia-Turkey). Fresenius Environmental Bulletin. Volume 17. No 2:154-163. https://www.researchgate.net/publication

[36] Potapova, M. and Charles, D.F., (2007). Diatom metrics for monitoring eutrophication in Rivers of the United States. Ecological Indicators 7:48-70. https://doi:10.1016/j.ecolind.2005.10.001.

[37] Solak, C.N., Barinova, S., Ács, É., and Dayıoğlu, H., (2012). Diversity and ecology of diatoms from Felent Creek (Sakarya river basin), Turkey. Turkish Journal of Botany, 36:191-203. https://doi:10.3906/bot-1102-16

[38] https://tr.wikipedia.org/wiki/Tödürge_Gölü .

[39] Rott E., Pipp E., Pfister P., Van Dam, H., Ortler, K., Binder, N., and Pall, K., (1999). Indikationslisten für Aufwuchsalgen in österreichischen Fliessgewässern. Teil 2: Trophieindikation (sowie geochemische Präferenzen, taxonomische und toxikologische Anmerkungen). Vienna, Austria: Wasserwirtschaftskataster, Bundesministerium f. Land-u. Forstwirtschaft (in German).

[40] Çelekli, A., Toudjanı, A.A., Gümüş, E.Y., Kayhan, S., Lekesiz, H. Ö., and Çetin, T., (2019). Determination of trophic weight and indicator values of diatoms in Turkish running waters for water quality assessment. Turkish Journal of Botany, 43:90-101. doi:10.3906/bot-1704-40. https://doi:10.3906/bot-1704-40.

[41] Lekesiz, Ö., Çelekli, A., and Yavuzatmaca, M., (2024). Determination of ecological statuses of streams in the Ceyhan River Basin using composition and ecological characteristics of diatom. Environmental Science and Pollution Research (2024), 31:34738–34755. https://doi.org/10.1007/s11356-024-33518-0.