• icon+90(535) 849 84 68
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-12876-5735
  • Article Type : Araştırma Makalesi
  • Publication Number : 1A0497
  • Page Number : 65-83
  • Doi : 10.12739/NWSA.2025.20.4.1A0497
  • Abstract Reading : 116
  • Download : 37
  • Atıf Sayısı : 0
  • Share :

  • PDF Download

Issue Details

  • Year : 2025
  • Volume : 20
  • Issue : 4
  • Number of Articles Published : 6
  • Published Date : 1.10.2025

Cover Download Context Page Download
Engineering Sciences

Serial Number : 1A
ISSN No. : 1308-7231
Release Interval (in a Year) : 4 Issues

MOD BİRLEŞTİRME VE DOĞRUSAL ZAMAN TANIMLI ANALİZ YÖNTEMLERİNİN KARŞILAŞTIRILMASI

Farshad Farahmand1

Bu çalışma, sismik yapı analizinde temel dinamik yöntemler olan Mod Birleştirme Yöntemi (MBY) ile Doğrusal Zaman Tanımlı Analiz (DZTA) yöntemlerini karşılaştırmalı olarak değerlendirmektedir. Tepki Spektrumu Yöntemi, deprem spektrum verilerini kullanarak yapı modlarının katkılarını istatistiksel olarak birleştirir ve maksimum tepkileri hızlıca tahmin eder. Düzenli ve doğrusal-elastik davranan yapılar için hesaplama kolaylığı ve yönetmeliklere uygunluğu nedeniyle ilk tasarım aşamalarında avantajlıdır. Ancak, MBY zamanla değişen veya doğrusal olmayan etkileri doğrudan modelleyemez. Buna karşın, DZTA, gerçek veya sentetik ivme kayıtlarıyla yapı tepkilerini zaman boyunca adım adım hesaplar. Bu yaklaşım, yüksek mod etkilerinin belirgin olduğu, burulma düzensizlikleri veya karmaşık kütle-rijitlik dağılımı içeren yapılarda daha güvenilir sonuçlar verir. Analizler, doğrusal-elastik varsayım altında gerçekleştirilmiştir. Bulgular, standart yapılar için ilk tasarımda MBY'nin yeterli doğruluk sağladığını; ancak yüksek mod katkısı olan veya düzensiz geometrili yapılarda DZTA'nın üstün olduğunu ortaya koymaktadır. Sonuç olarak, bu iki yöntemin birlikte veya tamamlayıcı biçimde kullanılması, performansa dayalı sismik tasarımın güvenilirliğini ve dayanıklılığını önemli ölçüde artırabilir.

Keywords
Mod Birleştirme Yöntemi, Sismik Yapısal Analiz, Doğrusal Zaman Tanımlı Analizi Yöntem, Sismik Tasarım, Yapısal Dinamikler,

COMPARISON OF MODE COMBINATION AND LINEAR TIME HISTORY ANALYSIS METHODS

Farshad Farahmand1

This study presents a comparative evaluation of two fundamental dynamic analysis techniques widely employed in seismic structural assessment: the Response Spectrum Method (RSM) and the Linear Time History Analysis (LTHA). The RSM statistically combines the contributions of structural modes using earthquake spectrum data to estimate maximum responses quickly. This method offers computational simplicity, speed, and code compliance, making it advantageous for the preliminary design of regular, linear-elastic structures. However, the RSM cannot directly capture time-varying or nonlinear structural behaviors. In contrast, LTHA calculates the step-by-step response of the structure over time using real or synthetic ground acceleration records. This approach provides more reliable results for structures where higher mode effects are pronounced, or those exhibiting torsional irregularities and complex mass-stiffness distributions. The analyses in this work were conducted under the assumption of linear-elastic behavior. Findings indicate that while the RSM provides sufficient accuracy for the initial design of standard buildings, the LTHA yields more dependable results in structures with significantly higher mode contributions or irregular geometries. Consequently, the complementary use of both methods can significantly enhance the reliability and robustness of performance-based seismic design.

Keywords
Mode Combination Method, Seismic Structural Analysis, Linear Time History Analysis Method, Seismic Design, Structural Dynamics,

Details
   

Authors

Farshad Farahmand (1) (Corresponding Author)

Fırat Üniversitesi, Fen Bilimleri Enstitüsü
221139101@firat.edu.tr | 0009-0007-3569-438X

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Chopra, A.K., (2017). Dynamics of Structures: Theory and Applications to Earthquake Engineering, 5th ed. Upper Saddle River, NJ, USA: Pearson Education.

[2] https://scholar.google.com/scholar?q=Chopra+Dynamics+of+Structures+2017.

[3] Computers and Structures, Inc., CSI. (2020). ETABS 19 Structural Analysis and Design Software. Berkeley, California, USA.

[4] https://scholar.google.com/scholar?q=ETABS+19+Structural+Analysis+Design+Software+CSI.

[5] Türk Standartlari Enstitüsü. (2018). Türk Bina Deprem Yönetmeligi TBDY-2018. Ankara, Türkiye: T.C. Resmî Gazete.

[6] https://scholar.google.com/scholar?q=Türk+Bina+Deprem+Yönetmeligi+2018.

[7] Miranda, E. and Taghavi, S., (2005). Approximate floor acceleration requirements for multi-story buildings. Journal of Structural Engineering ASCE.

[8] https://scholar.google.com/scholar?q=Miranda+Taghavi+Approximate+floor+acceleration+requirements+2005.

[9] Clough, R.W. and Penzien, J., (2003). Dynamics of Structures, 3rd ed. Berkeley, USA: Computers and Structures, Inc.

[10] https://scholar.google.com/scholar?q=Clough+Penzien+Dynamics+of+Structures+2003.

[11] Makris, N. and Black, C.J., (2004). Dimensional analysis of rigid-plastic and elastoplastic structures under impact-type excitation. Journal of Engineering Mechanics ASCE. https://scholar.google.com/scholar?q=Makris+Black+Dimensional+analysis+rigid+plastic+elastoplastic+2004.

[12] Kalkan, E. and Kunnath, S.K., (2007). Assessment of current nonlinear static procedures for seismic evaluation of buildings. Engineering Structures, 29, 305–316.

[13] https://scholar.google.com/scholar?q=Kalkan+Kunnath+Assessment+Current+Nonlinear+Static+Procedures+2007.

[14] Antoniou, S. and Pinho, R., (2004). Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering, 8, 643–661.

[15] https://scholar.google.com/scholar?q=Antoniou+Pinho+displacement+based+adaptive+pushover+2004.

[16] Bojórquez, E. and Ruiz, S.E., (2004). Comparison of spectral- and energy-based intensity measures for predicting seismic structural response. Engineering Structures, 26, 1–14. https://scholar.google.com/scholar?q=Bojórquez+Ruiz+Comparison+spectral+energy+based+intensity+measures+2004.

[17] Tena-Colunga, A., (2004). Evaluation of the seismic response of slender, setback RC moment-resisting frame buildings designed according to the seismic guidelines of a modern seismic code. 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 2027. https://scholar.google.com/scholar?q=Tena+Colunga+Evaluation+seismic+response+slender+setback+RC+2004.

[18] Ruiz-García, J. and Miranda, E., (2006). Residual displacement ratios for assessment of existing structures. Earthquake Engineering and Structural Dynamics, 35, 315–336. https://scholar.google.com/scholar?q=Ruiz+Garcia+Miranda+Residual+displacement+ratios+2006.

[19] Korkmaz, K.A. and Korkmaz, S.Z., (2007). Seismic performance evaluation of reinforced concrete buildings using nonlinear time-history analysis. Building and Environment, 42, 191–201. https://scholar.google.com/scholar?q=Korkmaz+Korkmaz+Seismic+performance+nonlinear+time+history+2007.

[20] Zareian, F. and Krawinkler, H., (2010). Structural system parameter selection based on the collapse potential of buildings in earthquakes. Journal of Structural Engineering ASCE, 136, 933–943. https://scholar.google.com/scholar?q=Zareian+Krawinkler+Structural+system+parameter+selection+2010.

[21] Haselton, C.B., Liel, A.B., Deierlein, G.G., Dean, B.S. and Chou, J.H., (2011). Seismic collapse safety of reinforced concrete buildings. Earthquake Engineering and Structural Dynamics. https://scholar.google.com/scholar?q=Haselton+Seismic+collapse+safety+reinforced+concrete+buildings+2011.

[22] Asgarian, B. and Shokrgozar, H.R., (2009). BRBF response modification factors for seismic design of offshore platforms. Journal of Constructional Steel Research, 65, 290–298. https://scholar.google.com/scholar?q=Asgarian+Shokrgozar+BRBF+response+modification+factor+2009.

[23] Paz, M. and Leigh, W., (2004). Structural Dynamics: Theory and Computation, 5th ed. Dordrecht, Netherlands: Kluwer Academic Publishers. https://scholar.google.com/scholar?q=Paz+Leigh+Structural+Dynamics+Theory+and+Computation+2004.

[24] Newmark, N.M., (1959). A computational method for structural dynamics. Journal of Engineering Mechanics ASCE, 85. https://scholar.google.com/scholar?q=Newmark+A+computational+method+for+structural+dynamics+1959.

[25] Bathe, K.J., (1996). Finite Element Procedures. Upper Saddle River, NJ, USA: Prentice Hall. https://scholar.google.com/scholar?q=Bathe+Finite+Element+Procedures+1996

[26] Jeong, S.-H. and Elnashai, A.S., (2005). Analytical assessment of an irregular RC frame for full-scale 3D pseudo-dynamic testing Part I. Journal of Earthquake Engineering, 9, 95–112. https://scholar.google.com/scholar?q=Jeong+Elnashai+Analytical+assessment+irregular+RC+frame+2005.

[27] Poursha, M., Khoshnoudian, F., and Moghadam, A.S., (2009). A consecutive modal pushover procedure for estimating the seismic demands of tall buildings. Engineering Structures, 31, 591–599. https://scholar.google.com/scholar?q=Poursha+Consecutive+modal+pushover+procedure+2009.

[28] CSI, Computers and Structures Inc., (2020). ETABS 19 Structural Analysis and Design Software. Berkeley, California, USA. https://scholar.google.com/scholar?q=CSI+ETABS+19+2020

[29] Baker, J.W., Lin, T., Shahi, S.K., and Jayaram, N., (2011). New ground motion selection procedures for the PEER transportation program. PEER Report 2011/03, UC Berkeley.

[30] https://scholar.google.com/scholar?q=Baker+New+ground+motion+selection+procedures+PEER+2011.

[31] Abbasnia, R., Mohajeri Nav, F., Zahedifar, S., and Tajik, A., (2007). Evaluation of adaptive pushover methods for irregular buildings with torsion. International Journal of Engineering. https://scholar.google.com/scholar?q=Evaluation+of+Adaptive+Pushover+Methods+Irregular+Buildings+torsion.

[32] Lee, D.H. and Foutch, D.A., (2002). Performance evaluation of new steel frame buildings under seismic loads. Earthquake Engineering and Structural Dynamics.

[33] https://scholar.google.com/scholar?q=Lee+Foutch+Performance+evaluation+steel+frame+seismic+2002.

[34] FEMA, Federal Emergency Management Agency, (2020). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures FEMA P-1050. Washington, DC, USA. https://scholar.google.com/scholar?q=FEMA+P-1050+NEHRP+2020.

[35] Rahgozar, R. and Sharifi, M.J., (2011). Comparison of nonlinear static and dynamic analysis methods in seismic evaluation of reinforced concrete buildings. International Journal of Civil Engineering. https://scholar.google.com/scholar?q=Rahgozar+Sharifi+Comparison+nonlinear+static+dynamic+analysis+2011.

[36] Vamvatsikos, D. and Cornell, C.A., (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31, 491–514.

[37] https://scholar.google.com/scholar?q=Vamvatsikos+Cornell+Incremental+dynamic+analysis+2002.

[38] Naumoski, N., Tso, W.K., and Humar, J., (2005). Design and Analysis of Earthquake-Resistant Structures. Canadian Association for Earthquake Engineering.

[39] https://scholar.google.com/scholar?q=Naumoski+Design+and+Analysis+of+Earthquake-Resistant+Structures.

[40] PEER, Pacific Earthquake Engineering Research Center(2010). Performance-Based Seismic Design Guidelines. UC Berkeley.

[41] https://scholar.google.com/scholar?q=PEER+Performance+Based+Seismic+Design+Guidelines+2010.

[42] FEMA, (2012). Seismic Performance Assessment of Buildings.https://scholar.google.com/scholar?q=FEMA+Seismic+Performance+Assessment+of+Buildings+2012

[43] ASCE, (2017). Seismic Assessment and Strengthening of Existing Buildings. https://scholar.google.com/scholar?q=ASCE+Seismic+Assessment+and+Strengthening+of+Existing+Buildings+2017.

[44] SEAOC, Structural Engineers Association of California, (2019). Recommended Design Practice for Performance-Based Seismic Design. Sacramento, CA, USA.

[45] https://scholar.google.com/scholar?q=SEAOC+Performance+Based+Seismic+Design+2019.

[46] Priestley, M.J.N., Calvi, G.M., and Kowalsky, M.J., (2007. Displacement-Based Seismic Design of Structures. Pavia, Italy: IUSS Press.

[47] https://scholar.google.com/scholar?q=Priestley+Displacement+Based+Seismic+Design+2007.

[48] ASCI, American Society of Civil Engineers, (2022). Minimum Design Loads and Associated Criteria for Buildings and Other Structures ASCE SEI 7-22. Reston, VA, USA.

[49] https://scholar.google.com/scholar?q=ASCE+7-22+Minimum+Design+Loads+2022.

[50] Naeim, F. and Kelly, J.M., (1999). Design of Seismic Isolated Structures: From Theory to Practice. New York, USA: Wiley.

[51] https://scholar.google.com/scholar?q=Naeim+Kelly+Design+of+Seismic+Isolated+Structures+1999.