• icon+90(533) 652 66 86
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-1371-4349
  • Article Type : Araştırma Makalesi
  • Publication Number : 3A0086
  • Page Number : 55-63
  • Doi : 10.12739/NWSA.2018.13.4.3A0086
  • Abstract Reading : 685
  • Download : 149
  • Share :

  • PDF Download

Issue Details

  • Year : 2018
  • Volume : 13
  • Issue : 4
  • Number of Articles Published : 3
  • Published Date : 1.10.2018

Cover Download Context Page Download
Physical Sciences

Serial Number : 3A
ISSN No. : 1308-7304
Release Interval (in a Year) : 4 Issues

ADİ DİFERANSİYEL DENKLEMLER İÇİN BİR NOT: K-KARE DİFERANSİYEL DENKLEMLER VE ÇÖZÜMLERİ

Adem ÇELİK 1

Bu çalışmada, adi diferansiyel denklemler için “k-kare diferansiyel denklemler” tanımlanmıştır. Bu denklemlerin genel çözümü araştırılmıştır. Buna bağlı olarak, bazı lineer tip, Cauchy-Euler tipi, Legendre tipi ve lineer olmayan tip diferansiyel denklemler için uygulamalar yapılmıştır. Ayrıca, kompleks analize genişletme yapılmıştır.

Keywords
Matematik Analiz, Adi diferansiyel denklem, Lineer diferansiyel denklem, lineer olmayan Diferansiyel denklem, k-Katlı İntegral,

A NOTE FOR ORDINARY DIFFERENTIAL EQUATIONS: K-SQUARE DIFFERENTIAL EQUATIONS AND SOLUTIONS

Adem ÇELİK 1

In this study, “k-square differential equations” for ordinary differential equations are defined. The general solution of these equations is investigated. Accordingly, somelinear equation types, Cauchy-Euler type, Legendre type and nonlinear equations have been applied. In addition, the complex analysis expansions were developed.

Keywords
Mathematical Analysis, Ordinary Differential Equations, Linear Differential Equations, Nonlinear Differential Equations, k-fold Integral ,

Details
   

Authors

Adem ÇELİK (1) (Corresponding Author)

Dokuz Eylül Üniversitesi
adem.celik@deu.edu.tr | 0000-0019-0072-937

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Sveshnikov, A. and Tikhonov, A., (1978). The Theory of Functions of a Complex Variable. Translated from the Russian by George Yankovsky, Mır Publishers, Moskov.