• icon+90(535) 849 84 68
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-14448-5792
  • Article Type : Araştırma Makalesi
  • Publication Number : 1A0500
  • Page Number : 113-128
  • Doi : 10.12739/NWSA.2025.20.4.1A0500
  • Abstract Reading : 138
  • Download : 34
  • Atıf Sayısı : 0
  • Share :

  • PDF Download

Issue Details

  • Year : 2025
  • Volume : 20
  • Issue : 4
  • Number of Articles Published : 6
  • Published Date : 1.10.2025

Cover Download Context Page Download
Engineering Sciences

Serial Number : 1A
ISSN No. : 1308-7231
Release Interval (in a Year) : 4 Issues

TEKSTİL ENDÜSTRİSİNDE GİZLİ KAPASİTENİN ORTAYA ÇIKARILMASI: GELENEKSEL ZAMAN ETÜDÜ VE KÖK NEDEN ANALİZİ ENTEGRASYONU

Ethem Sefa KUCUKYILMAZ1 , Erhan AKIN 2 , Gizem Öztürk3

Bu çalışmanın amacı, hazır giyim sektöründe darboğaz oluşturabilen otomatik serim makinelerinin operasyonel verimliliğini ölçmek, gizli kapasite kayıplarını belirlemek ve bu kayıpların kök nedenlerini analiz etmektir. Metodolojik olarak, Phakphonhamin (2018) tarafından önerilen "Adam-Makine Şeması" ve "Kayıp Zaman Analizi" yöntemleri temel alınmış, bu geleneksel yöntemler Makine Öğrenmesi (Random Forest ve K-Means) algoritmaları ile desteklenmiştir. Elde edilen bulgular, işletmeler arasında önemli performans farkları olduğunu göstermektedir; benchmark olarak belirlenen işletme %89.4 verimlilik oranına ulaşırken, diğer işletmelerde verimlilik oranlarının %18,6 ile %64,6 arasında değiştiği tespit edilmiştir. Veri analizi sonuçlarına göre, en büyük verimlilik kaybı kalemi, toplam işlem süresinin %51,1'ine kadar ulaşabilen "Rulo Değişim Süreleri"dir. Çalışma kapsamında geliştirilen Random Forest tabanlı simülasyon modeli, rulo değişim süreçlerinde sağlanacak %50'lik bir iyileştirmenin, genel işletme verimliliğinde yaklaşık %6 puanlık (net %31,67'den %37,66'ya) bir artış sağlayacağını öngörmektedir. Sonuç olarak bu çalışma, serim operasyonlarında makine hızından ziyade hazırlık (setup) süreçlerinin verimlilik üzerindeki belirleyici etkisini nicel verilerle kanıtlamaktadır.

Keywords
Otomatik Serim Makinesi, OEE, Verimlilik Analizi, Makine Öğrenmesi, Tekstil Endüstrisi,

REVEALING HIDDEN CAPACITY IN THE TEXTILE INDUSTRY: INTEGRATION OF TRADITIONAL TIME STUDY AND ROOT CAUSE ANALYSIS

Ethem Sefa KUCUKYILMAZ1 , Erhan AKIN 2 , Gizem Öztürk3

The aim of this study is to measure the operational efficiency of automatic spreading machines that may create bottlenecks in the ready-to-wear apparel industry, to identify hidden capacity losses, and to analyze the root causes of these losses. Methodologically, the Man–Machine Chart and Loss Time Analysis methods proposed by Phakphonhamin (2018) were adopted as the foundational approaches, and these traditional techniques were further supported by Machine Learning algorithms, namely Random Forest and K-Means. The findings reveal significant performance differences among the enterprises: while the benchmark company achieved an efficiency rate of 89.4%, efficiency levels in the other companies ranged between 18.6% and 64.6%. According to the data analysis results, the largest source of efficiency loss was identified as Roll Changeover Times, accounting for up to 51.1% of the total operation time. The Random Forest–based simulation model developed within the scope of the study predicts that a 50% improvement in roll changeover processes would result in an approximately 6 percentage-point increase in overall operational efficiency (from a net efficiency of 31.67% to 37.66%). In conclusion, this study quantitatively demonstrates that, in spreading operations, preparation and setup processes have a more decisive impact on efficiency than machine speed itself.

Keywords
Automatic Spreading Machine, OEE, Efficiency Analysis, Machine Learning, Textile Industry,

Details
   

Authors

Ethem Sefa KUCUKYILMAZ (1) (Corresponding Author)

Fırat Üniversitesi
eskucukyilmaz@firat.edu.tr | 0009-0008-6912-1851

Erhan AKIN (2)

Fırat Üniversitesi
eakin@firat.edu.tr | 0000-0001-6476-9255

Gizem Öztürk (3)

SERKON Makina Sanayi A.Ş.
ozturkggizem@gmail.com | 0009-0008-2328-4903

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Corrales, L., Lambán, M., Korner, M., and Royo, J., (2020). Overall equipment effectiveness: systematic literature review and overview of different approaches. Applied Sciences. https://doi.org/10.3390/app10186469.

[2] Sathler, K., Salonitis, K., and Kolios, A., (2023). Overall equipment effectiveness as a metric for assessing operational losses in wind farms: a critical review of literature. International Journal of Sustainable Energy, 42:374-396. https://doi.org/10.1080/14786451.2023.2189490.

[3] Pitoyo, D., Azwar, A., and Aprilia, A., (2024). Optimizing Operations: Evaluating Overall Equipment Effectiveness (OEE) And Failure Mode Effect Analysis (FMEA) For Muratec Qpro Ex Winding Machines at PT XYZ. Journal of Physics: Conference Series, 2928. https://doi.org/10.1088/1742-6596/2928/1/012013.

[4] Cao, Y., Kamaruzzaman, S., and Aziz, N., (2022). Green building construction: a systematic review of BIM utilization. Buildings. https://doi.org/10.3390/buildings12081205.

[5] Deng, L., Suo, H., and Ren, H., (2021). Design of Insulation Tape Tension Control System of Transformer Winding Machine Based on Fuzzy PID. Sensors (Basel, Switzerland), 21. https://doi.org/10.3390/s21196512.

[6] Meng, Y., Zhang, T., Wei, J., Zhang, J., and Zhai, X., (2023). Design and experiments of an automatic pipe winding machine. Journal of Agricultural Engineering. https://doi.org/10.4081/jae.2023.1429.

[7] Mewada, H., Pires, I., Engineer, P., and Patel, A., (2024). Fabric surface defect classification and systematic analysis using a cuckoo search optimized deep residual network. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2024.101681.

[8] Metin, A. and Bilgin, T., (2024). Automated machine learning for fabric quality prediction: a comparative analysis. PeerJ Computer Science, 10. https://doi.org/10.7717/peerj-cs.2188.

[9] Malashin, I., Martysyuk, D., Tynchenko, V., Gantimurov, A., Nelyub, V., Borodulin, A., and Galinovsky, A., (2025). Machine Learning in Polymeric Technical Textiles: A Review. Polymers, 17. https://doi.org/10.3390/polym17091172.

[10] Bukhsh, M., Khan, M., Zaidi, I., Yaseen, R., Khalid, A., and Ali, M., (2021). Productivity Improvement in Textile Industry using Lean Manufacturing Practices of 5S and Single Minute Die Exchange (SMED). Proceedings of the International Conference on Industrial Engineering and Operations Management. https://doi.org/10.46254/an11.20211282.

[11] Vargas-Tapia, K., Amiel-Reategui, G., and Viacava, G., (2022). Increase the efficiency of the production process of machines in textile and clothing companies through a model based on TPM and SMED. Proceedings of the 20th LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/laccei2022.1.1.752.

[12] Toki, G., Ahmed, T., Hossain, M., Alave, R., Faruk, M., Mia, R., and Islam, S., (2023). Single Minute Exchange Die (SMED): A sustainable and well-timed approach for Bangladeshi garments industry. Cleaner Engineering and Technology. https://doi.org/10.1016/j.clet.2022.100592.

[13] Wisetwoharn, P., Vanichchinchai, A., Sumrit, D., and Kitchot, S., (2025). Setup Time Reduction: A Case Study of a Wire Coating Extruder Machine. Key Engineering Materials, 1012:101-105. https://doi.org/10.4028/p-mwwj48.

[14] Niekurzak, M., Lewicki, W., Coban, H., and Bera, M., (2023). A Model to Reduce Machine Changeover Time and Improve Production Efficiency in an Automotive Manufacturing Organisation. Sustainability. https://doi.org/10.3390/su151310558.

[15] Aucasime-Gonzales, P., Tremolada-Cruz, S., Chavez-Soriano, P., Dominguez, F., and Raymundo, C., (2020). Waste Elimination Model Based on Lean Manufacturing and Lean Maintenance to Increase Efficiency in the Manufacturing Industry. IOP Conference Series: Materials Science and Engineering, 999. https://doi.org/10.1088/1757-899x/999/1/012013.

[16] Wang, G., Liu, G., and Li, Q., (2023). Knowledge Graph-Embedded Time-Serial-Data-Driven Bottleneck Analysis of Textile and Apparel Production Processes. Machines. https://doi.org/10.3390/machines11111005.

[17] Wang, C. and Kuo, C., (2023). Detecting dyeing machine entanglement anomalies by using time series image analysis and deep learning techniques for dyeing-finishing process. Adv. Eng. Informatics, 55, 101852. https://doi.org/10.1016/j.aei.2022.101852.

[18] Elkateb, S., Métwalli, A., Shendy, A., and Abu-Elanien, A., (2024). Machine learning and IoT – Based predictive maintenance approach for industrial applications. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2023.12.065.

[19] Bertola, N., Reuland, Y., and Brühwiler, E., (2023). Editorial: Structural sensing for asset management. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1164719.

[20] Scherlach, K. and Hertweck, C., (2021). Mining and unearthing hidden biosynthetic potential. Nature Communications, 12. https://doi.org/10.1038/s41467-021-24133-5.

[21] Phakphonhamin, V. and Chudokmai, M., (2018, May). Optimizing the performance of the LECTRA automatic fabric cutting machine. In 2018 5th International Conference on Business and Industrial Research (ICBIR) (pp:282-287). IEEE. https://doi.org/10.1109/ICBIR.2018.8391207.