• icon+90(533) 652 66 86
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-501-5712
  • Article Type : Araştırma Makalesi
  • Publication Number : 2A0200
  • Page Number : 42-52
  • Doi : 10.12739/NWSA.2024.19.4.2A0200
  • Abstract Reading : 130
  • Download : 25
  • Share :

  • PDF Download

Issue Details

  • Year : 2024
  • Volume : 19
  • Issue : 4
  • Number of Articles Published : 2
  • Published Date : 1.10.2024

Cover Download Context Page Download
Technological Applied Sciences

Serial Number : 2A
ISSN No. : 1308-7223
Release Interval (in a Year) : 4 Issues

ASENKRON MOTORLARDA KIRIK ROTOR ÇUBUKLARININ ERKEN TEŞHİSİ: TRANSFER ÖĞRENME YAKLAŞIMLARININ DEĞERLENDİRİLMESİ

Özgür AYDIN1 , Erhan AKIN 2

Asenkron motorlar, basit tasarımları, düşük bakım gereksinimleri ve uzun ömürleri nedeniyle hem günlük hayatta hem de endüstriyel uygulamalarda geniş bir kullanım alanına sahiptir. Bu motorlarda meydana gelen rotor arızalarının hızlı ve güvenilir bir şekilde tespit edilmesi, işletmelerin verimliliği ve sürekliliği açısından kritik öneme sahiptir. Bununla birlikte, transfer öğrenme yöntemi, motor arızalarının teşhisinde hala yeterince araştırılmamış bir alan olarak dikkat çekmektedir. Transfer öğrenme, mevcut veri setlerinden elde edilen bilgi birikimini yeni problemlere uyarlayarak, asenkron motorlarda rotor çubuğu arızalarının daha güvenilir bir şekilde teşhis edilmesini sağlayabilir. Bu çalışma, kırık rotor çubuklarının erken tespiti için transfer öğrenme modellerinin etkinliğini incelemektedir. Araştırmada, hazır bir veri setinden elde edilen beş farklı zaman-frekans görüntüsü kullanılmıştır. Bu görüntüler üzerinde beş farklı transfer öğrenme modeli değerlendirilmiş ve performansları karşılaştırılmıştır. Sonuçlar, transfer öğrenme yaklaşımlarının asenkron motor arızalarının teşhisinde %99,5'in üzerinde doğruluk oranlarına ulaştığını göstermektedir. Bu bulgular, yöntemin motor arıza teşhisi için etkili ve umut verici bir çözüm sunduğunu ortaya koymaktadır.

Keywords
Asenkron Motor, Arıza Teşhisi, Kırık Rotor Çubuğu, Transfer Öğrenme, Görüntü İşleme,

EARLY DETECTION OF BROKEN ROTOR BARS IN INDUCTION MOTORS: EVALUATION OF TRANSFER LEARNING APPROACHES

Özgür AYDIN1 , Erhan AKIN 3

Induction motors are widely used in both daily life and industrial applications due to their simple design, low maintenance requirements, and long service life. The rapid and reliable detection of rotor faults in these motors is critically important for ensuring operational efficiency and continuity in businesses. However, transfer learning remains an underexplored area in the diagnosis of motor faults. Transfer learning enables the application of knowledge gained from existing datasets to new problems, providing a more reliable approach for detecting rotor bar faults in induction motors. This study investigates the effectiveness of transfer learning models for the early detection of broken rotor bars. The research utilizes five different time-frequency images obtained from a pre-existing dataset. These images are analyzed using five distinct transfer learning models, and their performances are compared. The results demonstrate that transfer learning approaches achieve an accuracy rate exceeding 99.5% in diagnosing induction motor faults. These findings highlight the potential of this method as an effective and promising solution for motor fault diagnosis.

Keywords
Induction Motor, Fault Diagnosis, Broken Rotor Bar, Transfer Learning, Image Processing,

Details
   

Authors

Özgür AYDIN (1) (Corresponding Author)

Bingöl Üniversitesi - Enformatik Bölüm Başkanlığı
iamozguraydin@gmail.com | 0000-0001-8130-277X

Erhan AKIN (2)

Fırat Üniversitesi
eakin@firat.edu.tr | 0000-0001-6476-9255

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Hughes, A. and Drury, B., (2019). Electric motors and drives: fundamentals, types and applications. Newnes.

[2] Nandi, S., Toliyat, H.A., and Li, X., (2005). Condition monitoring and fault diagnosis of electrical motors—A review. IEEE transactions on energy conversion, 20(4):719-729.

[3] Mohan, N., Undeland, T.M., and Robbins, W.P., (2003). Power electronics: converters, applications, and design. John wiley and sons.

[4] Jain, P.H. and Bhosle, S.P., (2021). A review on vibration signal analysis techniques used for detection of rolling element bearing defects. SSRG Int. J. Mech. Eng, 8:14-29.

[5] Gangsar, P. and Tiwari, R., (2018). Multifault diagnosis of induction motor at intermediate operating conditions using wavelet packet transform and support vector machine. Journal of Dynamic Systems, Measurement, and Control, 140(8):081014.

[6] Rawat, W. and Wang, Z., (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9):2352-2449.

[7] Pan, S.J., and Yang, Q., (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345-1359.

[8] Howard, J. and Ruder, S., (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

[9] Aytar, Y. and Zisserman, A., (2011, November). Tabula rasa: Model transfer for object category detection. In 2011 international conference on computer vision (pp:2252-2259). IEEE.

[10] Li, X. and Zhang, W., (2020). Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics. IEEE Transactions on Industrial Electronics, 68(5):4351-4361.

[11] Tong, Z., Li, W., Zhang, B., Jiang, F., and Zhou, G., (2018). Bearing fault diagnosis under variable working conditions based on domain adaptation using feature transfer learning. IEEE access, 6:76187-76197.

[12] Razavi-Far, R., Farajzadeh-Zanjani, M., Zare, S., Saif, M., and Zarei, J., (2017, April). One-class classifiers for detecting faults in induction motors. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp:1-5). IEEE.

[13] Jain, S., Singhania, U., Tripathy, B., Nasr, E.A., Aboudaif, M.K., and Kamrani, A.K., (2021). Deep learning-based transfer learning for classification of skin cancer. Sensors, 21(23):8142.

[14] Fan, J., Lee, J., and Lee, Y., (2021). A transfer learning architecture based on a support vector machine for histopathology image classification. Applied Sciences, 11(14):6380.

[15] Shaha, M. and Pawar, M., (2018, March). Transfer learning for image classification. In 2018 second international conference on electronics, communication and aerospace technology (ICECA) (pp:656-660). IEEE.

[16] Misra, S., Kumar, S., Sayyad, S., Bongale, A., Jadhav, P., Kotecha, K., ... and Gabralla, L.A., (2022). Fault detection in induction motor using time domain and spectral imaging-based transfer learning approach on vibration data. Sensors, 22(21):8210.

[17] Treml, A.E., Flauzino, R.A., Suetake, M., Maciejewski, N.R., and Afonso, N., (2020). Experimental database for detecting and diagnosing rotor broken bar in a three-phase induction motor. IEEE DataPort.

[18] Tan, M. and Le, Q., (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp:6105-6114). PMLR.

[19] Tan, M. and Le, Q., (2021, July). Efficientnetv2: Smaller models and faster training. In International conference on machine learning (pp:10096-10106). PMLR.

[20] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A., (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence, 31:1.

[21] Dişli, F., Gedikpınar, M., and Sengur, A., (2023). Deep transfer learning-based broken rotor fault diagnosis for Induction Motors. Turkish Journal of Science and Technology, 18(1):275-290.

[22] Aydin, I. and Akin, E., (2024, July). Multi-sensory Fault Diagnosis of Broken Rotor Bars Using Transfer Learning. In International Conference on Intelligent and Fuzzy Systems (pp:349-356). Cham: Springer Nature Switzerland.

[23] Misra, S., Kumar, S., Sayyad, S., Bongale, A., Jadhav, P., Kotecha, K., ... and Gabralla, L.A., (2022). Fault detection in induction motor using time domain and spectral imaging-based transfer learning approach on vibration data. Sensors, 22(21):8210.

[24] Dişli, F., Gedikpınar, M., and Sengur, A., (2023). Deep transfer learning-based broken rotor fault diagnosis for Induction Motors. Turkish Journal of Science and Technology, 18(1):275-290.