• icon+90(533) 652 66 86
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-610-5673
  • Article Type : Araştırma Makalesi
  • Publication Number : 1A0489
  • Page Number : 16-25
  • Doi : 10.12739/NWSA.2024.19.2.1A0489
  • Abstract Reading : 69
  • Download : 11
  • Share :

  • PDF Download

Issue Details

  • Year : 2024
  • Volume : 19
  • Issue : 2
  • Number of Articles Published : 1
  • Published Date : 1.04.2024

Cover Download Context Page Download
Engineering Sciences

Serial Number : 1A
ISSN No. : 1308-7231
Release Interval (in a Year) : 4 Issues

EVALUATION OF PROPERTIES OF CARBON FIBER SCMS CONTAINING FLY ASH AND MARBLE DUST AFTER HIGH TEMPERATURE

Melek AKGÜL1 , Serkan Etli2

In this experimental study, the effect of high temperature on the samples produced by substituting marble dust (MD) and fly ash (FA) to CEM-I 42.5R portland cement (PC) in carbon fiber SCMs was evaluated. The amount of chopped carbon fiber of 5mm length used in the study was taken as 2.35kg/m3 in all SCM sets. In addition, MD and FA were substituted into the cement as single and double by mass. After lime-saturated water cure to 28 days curing the specimens were divided into 3 groups and unit volume weight, porosity and axial compressive strength were determined. As a result of the study, it was determined that high temperature treatment was effective on porosity and unit volume weight for all double and single substitution cases. When the compressive strengths of double and single substitutes of FA and MD after high temperature were analyzed; it was found that the sets presented values close to the reference mix.

Keywords
Marble Dust, Fly Ash, Self-compacting Mortar, High Temperature, Carbon Fibre,

Details
   

Authors

Melek AKGÜL (1) (Corresponding Author)

Munzur University
melekakgul@munzur.edu.tr | 0000-0001-8815-3762

Serkan Etli (2)

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ
serkan_etli_1986@hotmail.com | 0000-0003-3093-4106

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Akgül, M., Doğan, O., and Etli, S., (2020). Investigation of mechanical properties of granulated waste rubber aggregates substituted self-compacting concrete mortar produced with different cement. International Journal of Engineering Research and Development, 12:787–798. https://doi.org/10.29137/umagd.734614.

[2] Acikgenc, M., Karatas, M., and Ulucan, Z.C., (2013). Effects of Elazig region waste brick and limestone powder on engineering properties of self-compacting mortar. Pamukkale University Journal of Engineering Sciences, 19:249–255. https://doi.org/10.5505/pajes.2013.24633.

[3] Akgül, M. and Etli, S., (2023). Effect of partial inclusion of tiles and brick waste as binders in SCM elements on fresh state and early age mechanical properties. In: 3rd International Conference on Innovative Academic Studies. Proceeding Book, 699–706.

[4] Akgül, M. and Etli, S., (2024). Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height. Constr Build Mater, https://doi.org/10.1016/j.conbuildmat.2024.136300.

[5] Akgül, M. and Etli, S., (2024). Effect of metakaolin and colemanite on setting times and compressive strength of cement paste. In: 3. Bilsel International Gordion Scientific Researches Congress. Ankara. Proceeding book.

[6] Akgül, M. and Etli, S., (2024). Çimento hamurunun priz süresi ve erken yaş performansına plastik tozunun etkisi. In: 3rd International Conference On Frontiers in Academic Research ICFAR 2024. Konya, Proceeding book, 597–603.

[7] Demirel, S., Öz, H.Ö., Çiner, F., and Güneş, M., (2019). Türkiye’de atık malzemeden yapılmış kendiliğinden yerleşen harç üretiminin yaşam döngüsü analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, https://doi.org/10.28948/ngumuh.516780.

[8] Uygunoğlu, T., Topçu, İ.B., Şimşek, B. and Çınar, E., (2018). Kendiliğinden yerleşen harçların elektriksel özdirenci üzerine mineral katkıların etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22:986. https://doi.org/10.19113/sdufbed.46877.

[9] Tohumcu, I. and Bingöl, A.F., (2013). Silis dumani ve uçucu kül katkılı kendiliğinden yerleşen betonların taze beton özellikleri ve basinç dayanımları. DEÜ Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 15(2):31-44.

[10] ASTM C618-22, (2023). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM Internation.

[11] TS EN 197-1, (2011). Cement-Part 1: Compositions and conformity criteria for common cements. TSE, Ankara.

[12] Belaidi, A.S.E., Azzouz, L., Kadri, E., and Kenai, S., (2012). Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Constr Build Mater, 31:251–257. https://doi.org/10.1016/j.conbuildmat.2011.12.109.

[13] Vardhan, K., Goyal, S., Siddique, R., and Singh, M., (2015). Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr Build Mater, 96:615–621. https://doi.org/10.1016/j.conbuildmat.2015.08.071.

[14] Aruntaş, H.Y., Gürü, M., Dayı, M., and Tekin, İ., (2010). Utilization of waste marble dust as an additive in cement production. Mater Des, 31:4039–4042. https://doi.org/10.1016/j.matdes.2010.03.036.

[15] Aliabdo, A.A., Abd Elmoaty, A.E.M., and Auda, E.M., (2014). Re-use of waste marble dust in the production of cement and concrete. Constr Build Mater, 50:28–41. https://doi.org/10.1016/j.conbuildmat.2013.09.005.

[16] Yılmaz, A., (2013). Akrilik lif ve uçucu kül katkılı çimento harçlarının mekanik özelliklerinin araştırılması. Uluslararası Teknolojik Bilimler Dergisi, 5:67–73.

[17] Boğa, A.R., (2017). Effect of using carbon fiber and steel slag on mechanical and electrical conductivity properties of mortars. Afyon Kocatepe University Journal of Sciences and Engineering, 17:1066–1075. https://doi.org/10.5578/fmbd.66301.

[18] Topçu, İ.B., Demirel, O.E., and Uygunoğlu, T., (2017). Polipropilen lif katkılı harçların fiziksel ve mekanik özelikleri. Politeknik Dergisi, 20:91–96.

[19] Akgül, M. and Etli, S., (2023). Cam ve karbon fiber katkılı kendiliğinden yerleşen harçlarda taze hal özellikleri ve erken yaş mekanik özellikleri. International Conference on Pioneer and Innovative Studies, 1:212–216. https://doi.org/10.59287/icpis.831.

[20] Adar, M., Bingöl, F., and Adar, E., (2020). Kendiliğinden Yerleşen Betonun İşlenebilirliğine ve Yüksek Sıcaklık Direncine Polipropilen Lifin Etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9: 719–732. https://doi.org/10.17798/bitlisfen.572211.

[21] Korkut, F., Türkmenoğlu, Z.F., Taymuş, R.B. ve Güler, S., (2017). Çelik ve sentetik liflerin kendiliğinden yerleşen betonlarin taze ve mekanik özellikleri üzerine etkisi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6:560–570. https://doi.org/10.28948/ngumuh.341705.

[22] Gencel, O., Brostow, W., Datashvili, T., and Thedford, M., (2011). Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash. Compos Interfaces, 18:169–184. https://doi.org/10.1163/092764411X567567.

[23] Safiuddin, Md., Abdel-Sayed, G., and Hearn, N., (2022). Flexural and impact behaviors of mortar composite including carbon fibers. Materials, 15:1657. https://doi.org/10.3390/ma15051657.

[24] Türk, K., (2019). Some properties of hybrid fiber reinforced self-compacting concrete containing binary and ternary mineral admixture. In: 4th International Energy & Engineering Congress. Gaziantep. Proceeding book.

[25] Turgut, P., Türk, K., and Çekilmez, N., (2019). Kendiliğinden yerleşen harçlarda portland çimentosu, silis dumanı, uçucu kül kombinezonlarının basınçlı su geçirgenliğine etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31:269–276. https://doi.org/10.35234/fumbd.524290.

[26] Acay, E., (2010). Effect of elevated temperature on self compacting concrete containing fly ash (Yüksek Lisans Tezi). Eskişehir: Eskişehir Osmangazi Üniversitesi. Fen Bilimleri Enstitüsü.

[27] Bouzoubaâ, N. and Lachemi, M., (2001). Self-compacting concrete incorporating high volumes of class F fly ash. Cem Concr Res, 31:413–420. https://doi.org/10.1016/S0008-8846(00)00504-4.

[28] Sancak, E. and Özkan, Ş., (2014). Impact of sodium sulphate solution on some properties of cement produced by replacing with waste marble powder. SDU International Technologic Science, 6:36–49.

[29] Yazıcıoğlu, S. and Kara, C., (2017). Effects of using waste marble dust in concrete to carbonation. Journal of Polytechnic, 20:369–376.

[30] Gülan, L., Yıldız, S. and Keleştemur, O., (2016). Effect of carbonation on mechanical and physical properties of concrete with waste marble dust and glass fiber. Science and Eng. J of Fırat Univ, 28.

[31] Şenol, A.F. and Karakurt, C., (2023). Atık mermer tozunun çimento harçlarının dayanım özelliklerine etkisi. In: 1st International Conference on Frontiers in Academic Research. ICFAR, Konya. Proceeding book.

[32] TS EN 1008, (2003). Mixing water for concrete-Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. TSE, Ankara.

[33] The European Project Group, (2005). The European Guidelines for Self-Compacting Concrete Specification, Production and Use. EFNARC. 63.

[34] TS EN 934-2+A1, (2014). Kimyasal katkılar-Beton, harç ve şerbet için-Bölüm 2: Beton kimyasal katkıları-Tarifler, gerekler, uygunluk, işaretleme ve etiketleme. TSE, Ankara.

[35] TS EN 196-1, (2016). Methods of testing cement-Part 1: Determination of strength. TSE, Ankara.

[36] TS EN 933-1, (2012). Tests for geometrical properties of aggregates-part 1: Determination of particle size distribution sieving method. TSE, Ankara.

[37] ASTM C109/C109M, (2007). Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, 32:2141–2147. https://doi.org/10.1520/C0109.

[38] Yazıcı, Ş. and İnan Sezer, G., (2016). Farklı kür yöntemlerinin uçucu kül içeren harçların eğilme ve basınç dayanımına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22:396–399.