References
[1] Akgül, M., Doğan, O., and Etli, S., (2020). Investigation of mechanical properties of granulated waste rubber aggregates substituted self-compacting concrete mortar produced with different cement. International Journal of Engineering Research and Development, 12:787–798. https://doi.org/10.29137/umagd.734614.
[2] Acikgenc, M., Karatas, M., and Ulucan, Z.C., (2013). Effects of Elazig region waste brick and limestone powder on engineering properties of self-compacting mortar. Pamukkale University Journal of Engineering Sciences, 19:249–255. https://doi.org/10.5505/pajes.2013.24633.
[3] Akgül, M. and Etli, S., (2023). Effect of partial inclusion of tiles and brick waste as binders in SCM elements on fresh state and early age mechanical properties. In: 3rd International Conference on Innovative Academic Studies. Proceeding Book, 699–706.
[4] Akgül, M. and Etli, S., (2024). Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height. Constr Build Mater, https://doi.org/10.1016/j.conbuildmat.2024.136300.
[5] Akgül, M. and Etli, S., (2024). Effect of metakaolin and colemanite on setting times and compressive strength of cement paste. In: 3. Bilsel International Gordion Scientific Researches Congress. Ankara. Proceeding book.
[6] Akgül, M. and Etli, S., (2024). Çimento hamurunun priz süresi ve erken yaş performansına plastik tozunun etkisi. In: 3rd International Conference On Frontiers in Academic Research ICFAR 2024. Konya, Proceeding book, 597–603.
[7] Demirel, S., Öz, H.Ö., Çiner, F., and Güneş, M., (2019). Türkiye’de atık malzemeden yapılmış kendiliğinden yerleşen harç üretiminin yaşam döngüsü analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, https://doi.org/10.28948/ngumuh.516780.
[8] Uygunoğlu, T., Topçu, İ.B., Şimşek, B. and Çınar, E., (2018). Kendiliğinden yerleşen harçların elektriksel özdirenci üzerine mineral katkıların etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22:986. https://doi.org/10.19113/sdufbed.46877.
[9] Tohumcu, I. and Bingöl, A.F., (2013). Silis dumani ve uçucu kül katkılı kendiliğinden yerleşen betonların taze beton özellikleri ve basinç dayanımları. DEÜ Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 15(2):31-44.
[10] ASTM C618-22, (2023). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM Internation.
[11] TS EN 197-1, (2011). Cement-Part 1: Compositions and conformity criteria for common cements. TSE, Ankara.
[12] Belaidi, A.S.E., Azzouz, L., Kadri, E., and Kenai, S., (2012). Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Constr Build Mater, 31:251–257. https://doi.org/10.1016/j.conbuildmat.2011.12.109.
[13] Vardhan, K., Goyal, S., Siddique, R., and Singh, M., (2015). Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr Build Mater, 96:615–621. https://doi.org/10.1016/j.conbuildmat.2015.08.071.
[14] Aruntaş, H.Y., Gürü, M., Dayı, M., and Tekin, İ., (2010). Utilization of waste marble dust as an additive in cement production. Mater Des, 31:4039–4042. https://doi.org/10.1016/j.matdes.2010.03.036.
[15] Aliabdo, A.A., Abd Elmoaty, A.E.M., and Auda, E.M., (2014). Re-use of waste marble dust in the production of cement and concrete. Constr Build Mater, 50:28–41. https://doi.org/10.1016/j.conbuildmat.2013.09.005.
[16] Yılmaz, A., (2013). Akrilik lif ve uçucu kül katkılı çimento harçlarının mekanik özelliklerinin araştırılması. Uluslararası Teknolojik Bilimler Dergisi, 5:67–73.
[17] Boğa, A.R., (2017). Effect of using carbon fiber and steel slag on mechanical and electrical conductivity properties of mortars. Afyon Kocatepe University Journal of Sciences and Engineering, 17:1066–1075. https://doi.org/10.5578/fmbd.66301.
[18] Topçu, İ.B., Demirel, O.E., and Uygunoğlu, T., (2017). Polipropilen lif katkılı harçların fiziksel ve mekanik özelikleri. Politeknik Dergisi, 20:91–96.
[19] Akgül, M. and Etli, S., (2023). Cam ve karbon fiber katkılı kendiliğinden yerleşen harçlarda taze hal özellikleri ve erken yaş mekanik özellikleri. International Conference on Pioneer and Innovative Studies, 1:212–216. https://doi.org/10.59287/icpis.831.
[20] Adar, M., Bingöl, F., and Adar, E., (2020). Kendiliğinden Yerleşen Betonun İşlenebilirliğine ve Yüksek Sıcaklık Direncine Polipropilen Lifin Etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9: 719–732. https://doi.org/10.17798/bitlisfen.572211.
[21] Korkut, F., Türkmenoğlu, Z.F., Taymuş, R.B. ve Güler, S., (2017). Çelik ve sentetik liflerin kendiliğinden yerleşen betonlarin taze ve mekanik özellikleri üzerine etkisi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6:560–570. https://doi.org/10.28948/ngumuh.341705.
[22] Gencel, O., Brostow, W., Datashvili, T., and Thedford, M., (2011). Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash. Compos Interfaces, 18:169–184. https://doi.org/10.1163/092764411X567567.
[23] Safiuddin, Md., Abdel-Sayed, G., and Hearn, N., (2022). Flexural and impact behaviors of mortar composite including carbon fibers. Materials, 15:1657. https://doi.org/10.3390/ma15051657.
[24] Türk, K., (2019). Some properties of hybrid fiber reinforced self-compacting concrete containing binary and ternary mineral admixture. In: 4th International Energy & Engineering Congress. Gaziantep. Proceeding book.
[25] Turgut, P., Türk, K., and Çekilmez, N., (2019). Kendiliğinden yerleşen harçlarda portland çimentosu, silis dumanı, uçucu kül kombinezonlarının basınçlı su geçirgenliğine etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31:269–276. https://doi.org/10.35234/fumbd.524290.
[26] Acay, E., (2010). Effect of elevated temperature on self compacting concrete containing fly ash (Yüksek Lisans Tezi). Eskişehir: Eskişehir Osmangazi Üniversitesi. Fen Bilimleri Enstitüsü.
[27] Bouzoubaâ, N. and Lachemi, M., (2001). Self-compacting concrete incorporating high volumes of class F fly ash. Cem Concr Res, 31:413–420. https://doi.org/10.1016/S0008-8846(00)00504-4.
[28] Sancak, E. and Özkan, Ş., (2014). Impact of sodium sulphate solution on some properties of cement produced by replacing with waste marble powder. SDU International Technologic Science, 6:36–49.
[29] Yazıcıoğlu, S. and Kara, C., (2017). Effects of using waste marble dust in concrete to carbonation. Journal of Polytechnic, 20:369–376.
[30] Gülan, L., Yıldız, S. and Keleştemur, O., (2016). Effect of carbonation on mechanical and physical properties of concrete with waste marble dust and glass fiber. Science and Eng. J of Fırat Univ, 28.
[31] Şenol, A.F. and Karakurt, C., (2023). Atık mermer tozunun çimento harçlarının dayanım özelliklerine etkisi. In: 1st International Conference on Frontiers in Academic Research. ICFAR, Konya. Proceeding book.
[32] TS EN 1008, (2003). Mixing water for concrete-Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. TSE, Ankara.
[33] The European Project Group, (2005). The European Guidelines for Self-Compacting Concrete Specification, Production and Use. EFNARC. 63.
[34] TS EN 934-2+A1, (2014). Kimyasal katkılar-Beton, harç ve şerbet için-Bölüm 2: Beton kimyasal katkıları-Tarifler, gerekler, uygunluk, işaretleme ve etiketleme. TSE, Ankara.
[35] TS EN 196-1, (2016). Methods of testing cement-Part 1: Determination of strength. TSE, Ankara.
[36] TS EN 933-1, (2012). Tests for geometrical properties of aggregates-part 1: Determination of particle size distribution sieving method. TSE, Ankara.
[37] ASTM C109/C109M, (2007). Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, 32:2141–2147. https://doi.org/10.1520/C0109.
[38] Yazıcı, Ş. and İnan Sezer, G., (2016). Farklı kür yöntemlerinin uçucu kül içeren harçların eğilme ve basınç dayanımına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22:396–399.