• icon+90(533) 652 66 86
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-9157-5676
  • Article Type : Araştırma Makalesi
  • Publication Number : 5A0212
  • Page Number : 74-84
  • Doi : 10.12739/NWSA.2024.19.2.5A0212
  • Abstract Reading : 126
  • Download : 21
  • Share :

  • PDF Download

Issue Details

  • Year : 2024
  • Volume : 19
  • Issue : 2
  • Number of Articles Published : 4
  • Published Date : 1.04.2024

Cover Download Context Page Download
Ecological Life Sciences

Serial Number : 5A
ISSN No. : 1308-7258
Release Interval (in a Year) : 4 Issues

FARKLI TİCARİ YEMLER İLE BESLENEN ZEBRA BALIKLARI (Danio rerio)’ NDA BÜYÜME PERFORMANSI

Remzi ERGİN1 , M. ŞENER URAL2

Çalışma başlangıcında 0.30±0.04g olan yavru dönemini yeni tamamlamış toplam 180 adet zebra balığı 20x30x40cm boyutlarında 12 adet akvaryuma 15’er adet balık stoku yapılacak şekilde 60 gün süre ile besleme yapılmıştır. Çalışma sonucunda en düşük balık ağırlığı 0.67±0.05 g ve en yüksek balık ağırlığı 0.76±0.04g olduğu ölçümlerle tespit edilmiştir. Araştırmada besin içerikleri ve besin değerleri birbirinden farklı dört ticari yem kullanıldı. Çalışma sonunda gruplar arasında büyüme parametrelerinde istatistiksel açıdan gruplar arasında önemli farklar tespit edildi (P<0.05). Yaşama oranları üzerinde etkilerinin de farklı olduğu görüldü (P<0.05). Farklı ticari yemlerin içeriğinde bulunan bileşenler ile yemin balıklar üzerindeki büyüme performansını arttırdığı, daha yüksek bir yaşama oranı başarısına ulaşılabildiği görüldü. Çalışmamızda özellikle Tetra Min Pul yemi verilen balıklarda anlamlı olarak bir farklılığın olduğu görülmektedir.

Keywords
Zebra balığı, Danio rerio, Ticari Yem, Besleme, Büyüme Performansı,

GROWTH PERFORMANCE IN ZEBRA FISH (Danio rerio) FEED WITH DIFFERENT COMMERCIAL DIETS

Remzi ERGİN1 , M. ŞENER URAL2

A total of 180 zebra fish, which weighed 0.30±0.04 g at the beginning of the study, and had just completed their juvenile period, were fed for 60 days, with 15 fish stocked in 12 aquariums of 20x30x40 cm in size. As a result of the study, it was determined that the lowest fish weight was 0.67±0.05 g and the highest fish weight was 0.76±0.04 g. Four commercial feeds with different nutritional contents and nutritional values were used in the research. At the end of the study, statistically significant differences were detected in the growth parameters between the groups (P<0.05). Their effects on survival rates were also found to be different (P<0.05). It has been observed that the ingredients contained in different commercial feeds increase the growth performance of the fish and a higher survival rate can be achieved. In our study, it is seen that there is a significant difference especially in the fish fed Tetra Min Flake food.

Keywords
Zebrafish , Danio rerio, Commercial Feed, Feeding, Growth Performance,

Details
   

Authors

Remzi ERGİN (1)

remziergin_1983@hotmail.com | 0009-0005-6926-7699

M. ŞENER URAL (2) (Corresponding Author)

FIRAT ÜNIVERSITESI
msural@firat.edu.tr | 0000-0003-4966-4310

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Grunwald, D.J. and Eisen J.S., (2002). Headwaters of the zebrafish emergence of a new model vertebrate. 3(9):717-724.

[2] Muller, B. and Grossniklaus, U., (2010). Model organisms - A historical perspective. J. Proteomics., 73(11):2054–2063. doi: 10.1016/j. jprot.2010.08.002.

[3] Atasayar, Z., (2011). Zebra balığı’nda (denio rerio) peroksiredoksin 6 geni rs 41055489 polimorfizminin antioksidatif göstergeler ve ağır metal düzeyleriyle ilişkisi. Yüksek Lisans Tezi. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

[4] Nusslein-Volhard, C., (2012). The zebrafish issue1 of Development. Development, 139(22):4099-4103. doi: 10.1242/dev.085217.

[5] Richard, J., Njiwa, K., Muller, P., and Klein, R., (2004). Life cycle stages and length of zebrafish (Danio rerio). Exposed to DDT Introduction, 50(3):220–225.

[6] Boyle, D., Amlund, H., Lundebye, A.K., Hogstrand, C., and Bury, N.R., (2010). Bioavailability of a natural lead-contaminated invertebrate diet to zebrafish. Environ Toxicol Chem., 29(3):708–714. doi: 10.1002/ etc.61.

[7] Leung, L.C., Wang, G.X., and Mourrain, P., (2013). Imaging zebrafish neural circuitry from whole brain to synapse. Front. Neural Circuits, 7:76. doi: 10.3389/fncir.2013.00076.

[8] Arrenberg, A.B. and Driever, W., (2013). Integrating anatomy and function for zebrafish circuit analysis. Front Neural Circuits, 7:74. doi: 10.3389/fncir.2013.000748.

[9] Kermen, F., Franco, L.M., Wyatt, C., and Yaksi, E., (2013). Neural circuits mediating olfactory-driven behavior in fish. Front Neural Circuits, 7:62. doi: 10.3389/fncir.2013.00062.

[10] Maaswinkel, H., Le, N., He, L., Zhu, L., and Weng, W., (2013). Dissociating the effects of habituation, black walls, buspirone and ethanol on anxiety-like behavioral responses in shoaling zebrafish. A 3D approach to social behavior. Pharmacol Biochem Behav., 108:16-27. doi:10.1016/j. pbb.2013.04.009.

[11] Morin, C., de Souza Silva, M.A., Muller, C.P., Hardigan, P., and Spieler, R.E., (2013). Active avoidance learning in zebrafish (Danio rerio) - the role of sensory modality and inter-stimulus interval. Behav Brain Res., 248:141-143. doi:10.1016/j.bbr.2013.04.009.

[12] Portugues, R., Feierstein, C.E., Engert, F., and Orger, M.B., (2014). Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior. Neuron., 81(6):1328-1343. doi: 10.1016/j. neuron.2014.01.019.

[13] Goessling, W., North, T.E., and Zon, L.I., (2007). New waves of discovery: modeling cancer in zebrafish. J. Clin Oncol., 25(17):2473–2479.

[14] Moshal, K.S., Ferri Lagneau, K.F., and Leung, T., (2010). Zebrafish model: worth considering in defining tumor angiogenesis. Trends Cardiovasc Med., 20(4):114–119. doi: 10.1016/j.tcm.2010.10.001.

[15] Ma, A.C.H., Guo, Y., He, A.B.L., and Leung, A.Y.H., (2011). Modeling tumor angiogenesis with zebrafish. In vasculogenesis and angiogenesis - from embryonic development to regenerative medicine. Chapter 7. Dan T. Simionescu and AgnetaSimionescuEds, 133-144. DOI: 10.5772/28763

[16] Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., and McLaren, S., (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446):498–503. doi: 10.1038/nature12111.

[17] Flynn, E..J, Trent, C.M., and Rawls, J.F., (2009). Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J. Lipid Res., 50(8):1641–1652. doi: 10.1194/jlr.M800590-JLR200.

[18] Ulloa, P.E., Iturra, P., Neira, R., and Araneda, C., (2011). Zebrafish as a model organism for nutrition and growth: towards comparative studies of nutritional genomics applied to aquacultured fishes. Rev Fish Biol Fish., 21:649–666.

[19] Maddison, L.A. and Chen, W., (2012). Nutrient Excess Stimulates Cell Neogenesis in Zebrafish. Diabetes 61910:2517–2524.

[20] Yokobori, E., Azuma, M., Nishiguchi, R., Kang, K.S., Kamijo, M., Uchiyama, M., and Matsuda, K., (2012). Neuropeptide Y stimulates food intake in the Zebrafish, Danio rerio. J. Neuroendocrinol, 24(5):766–73. doi: 10.1111/j.1365-2826.2012.02281.x.

[21] Ulloa, P.E., Medrano, J.F., and Feijoo, C.J., (2014). Zebrafish as animal model for aquaculture nutrition research. Front. Genet., 5:313. doi: 10.3389/fgene.2014.00313

[22] Dahm, R. and Geisler, R., (2006). Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol.(NY), 8(4):329–345.

[23] Lieschke, G.J. and Currie, P.D., (2007). Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics, 8(5):353-367.

[24] Willemsen, R., Hasselaar, W., Linde, H., and Van Der Bonifati, V., (2008). Zebrafish as a new model organism for Parkinson’s disease. In Proceedings of Measuring Behavior. Spink AJ, Ballintijn MR, Bogers ND, et al. Eds. 50–51.

[25] You, M.S. and Jiang, Y.J., (2007). Drug Discovery Using Zebrafish. Drug Discov.;1–2.

[26] Song, Z., Zhang, X., Jia, S., Yelick, P.C., and Zhao, C., (2016). Zebrafish as a model forhumanciliopathies. Journal of Genetics and Genomics. doi.org/10.1016/j.jgg.2016.02.001.

[27] Dede, K., (2020). Kontrollü laboratuvar koşullarında zebra balığı (Danio rerio, hamilton 1822) yapay üretimi ve cinsiyet oranı. Yüksek Lisans Tezi, İskenderun Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

[28] Çetinkaya, O., (2005). Balık biyolojisi araştırma yöntemleri. Ankara, Nobel Kitap, pp:239-276.

[29] Arıman, H. ve Aras, M.N., (2003). Çeşitli yem gruplarının alabalık (Oncorhynchus mykiss, Walbaum, 1792) yavrularının büyüme performansına ve et verimi özelliklerine etkileri. E.Ü. Su Ürünleri Dergisi, 20(3-4):405-411.

[30] Özdamar, K., (2001). Paket programlar ve istatistiksel veri analizi çok değişkenli analizler (4. Baskı). Eskişehir, Kaan Yayınları.

[31] Jaya-Ram, A., Kuah, M.K., Lim, P.S., Kolkovski, S., and Shu-Chien, A.C., (2008). Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture, 277:275–281. Doi:10.1016/j.aquaculture.2008.02.027.

[32] Diogo, P., Martins, G., Gavaia, P., Pinto, W., Dias, J., Cancela, L., and Martinez-Paramo, S., (2015). Assessment of nutritional supplementation in phospholipids on the reproductive performance of zebrafish, Danio rerio (Hamilton 1822). J. Appl. Ichthyol., 31(Suppl. 1):3–9. Doi: 10.1111/jai.12733.

[33] Gonzales, J.M.J., (2012). Preliminary evaluation on the effects of feeds on the growth and early reproductive performance of zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci., 51(4):412–417.

[34] Izquierdo, M., Fernandez-Palacios, H., and Tacon, A., (2001). Effect of broodstock nutrition on reproductive performance of fish. Aquaculture, 197:25–42. doi:10.1016/S0044-8486(01)00581-6

[35] Paull, G.C., Filby, A., Giddins, H., Coe, T., Hamilton, P., and Tyler, C., (2010). Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish, 7:109–117. doi:10.1089/zeb.2009.0618.

[36] Dabrowski, K., (1977). Protein requirements of grass carp fry (Ctenopharyngodon idella Val.). Aquaculture, 12:63–67. Doi:10.1016/0044-8486(77)90047-3.

[37] Sotolu, A.O., (2010). Effects of varying dietary protein levels on the breeding performance of Clarias gariepinus broodstocks and fry growth rate. Livest. Res. Rur. Dev., 22, Article #6. Retrieved May 13, 2013. http://www.lrrd.org/lrrd22/4/soto22067.htm.