References
[1] Elyasigorji, Z., Izadpanah, M., Hadi, F., et al. (2023). Mitochondrial genes as strong molecular markers for species identification. Nucleus, 66(1):81–93. https://doi.org/10.1007/s13237-022-00393-4
[2] Xing, B., Lin, L., and Wu, Q., (2025). Application of mitochondrial genomes to species identification and evolution. Electronic Journal of Biotechnology, 76:39–48.
[3] Ladoukakis, E.D. and Zouros, E., (2017). Evolution and inheritance of animal mitochondrial DNA: Rules and exceptions. Journal of Biological Research–Thessaloniki, 24:2.
[4] Dong, Z., Wang, Y., Li, C., et al., (2021). Mitochondrial DNA as a molecular marker in insect ecology: Current status and future prospects. Annals of the Entomological Society of America, 114(4):470–476. https://doi.org/10.1093/aesa/saab020
[5] Gendron, E.M., Qing, X., Sevigny, J.L., et al., (2024). Comparative mitochondrial genomics in Nematoda reveal variation in compositional biases and substitution rates. BMC Genomics, 25(1):615. https://doi.org/10.1186/s12864-024-10500-1
[6] Keskin, E. and Atar, H.H., (2013). DNA barcoding commercially important fish species of Turkey. Molecular Ecology Resources, 13(5):788–797.
[7] Zangl, L., Daill, D., Schweiger, S., Gassner, G., and Koblmüller, S., (2020). A reference DNA barcode library for Austrian amphibians and reptiles. PLoS ONE, 15(3):e0229353.
[8] Bucklin, A., Peijnenburg, K.T.C.A., Kosobokova, K.N., et al., (2021). Toward a global reference database of COI barcodes for marine zooplankton. Marine Biology, 168:78. https://doi.org/10.1007/s00227-021-03887-y
[9] Bingpeng, X., Heshan, L., Zhilan, Z., Chunguang, W., Yanguo, W., and Jianjun, W., (2018). DNA barcoding for identification of fish species in the Taiwan Strait. PLoS ONE, 13(6):e0198109. https://doi.org/10.1371/journal.pone.0198109
[10] Hahn, A. and Zuryn, S., (2019). Mitochondrial genome mutations that generate reactive oxygen species. Antioxidants, 8(9):392. https://doi.org/10.3390/antiox8090392.
[11] Nosek, J. and Tomáška, L., (2003). Mitochondrial genome diversity: Evolution of the molecular architecture and replication strategy. Current Genetics, 44:73–84.
[12] Roger, A.J., Muñoz-Gómez, S.A., and Kamikawa, R., (2017). The origin and diversification of mitochondria. Current Biology, 27(21):R1177–R1192.
[13] Zardoya, R., (2020). Recent advances in understanding mitochondrial genome diversity. F1000Research, 9:270.
[14] Sato, M. and Sato, K., (2013). Maternal inheritance of mitochondrial DNA by diverse mechanisms. Biochimica et Biophysica Acta, 1833(8):1979–1984.
[15] Allio, R., Donega, S., Galtier, N., et al., (2017). Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular Biology and Evolution, 34(11):2762–2772. https://doi.org/10.1093/molbev/msx197
[16] Patwardhan, A., Ray, S., and Roy, A., (2014). Molecular markers in phylogenetic studies: A review. Journal of Phylogenetics and Evolutionary Biology, 2(2):131.
[17] Gendron, E.M., Sevigny, J.L., Byiringiro, I., et al., (2023). Nematode mitochondrial metagenomics: A new tool for biodiversity analysis. Molecular Ecology Resources, 23(5):975–989. https://doi.org/10.1111/1755-0998.13761
[18] Thomsen, P.F. and Willerslev, E., (2015). Environmental DNA: An emerging tool in conservation. Biological Conservation, 183:4–18.
[19] Hebert, P.D.N., (2003). Cytochrome c oxidase I divergence among closely related species. Proceedings of the Royal Society B, 270:S96–S99.
[20] Hebert, P.D.N. and Gregory, T.R., (2005). The promise of DNA barcoding. Systematic Biology, 54(5):852–859.
[21] White, D.J., Wolff, J.N., Pierson, M., et al., (2008). Revealing the complexities of mtDNA inheritance. Molecular Ecology, 17(23):4925–4942.
[22] Rubinoff, D. and Holland, B.S., (2005). Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic inference. Systematic Biology, 54(6):952–961.
[23] Barata, S.D., Dörücü, M., and Gürses, M., (2022). Identification and Molecular Investigation of Diplostomum in Capoeta umbla Caught from Freshwater Sources, Turkey. Genetics of Aquatic Organisms, 6(2):GA454. http://doi.org/10.4194/GA454
[24] Barata, S.D., Dörücü, M., Saglam, N., Gürses, M., and Otlu, Ö., (2023). Molecular Diversity of Diplostomum spathaceum (Digenea: Diplostomidae) on the Capoeta umbla and Cyprinus carpio (Cypriniformes) Using Mitochondrial DNA Barcode. Turkish Journal of Fisheries and Aquatic Sciences, 23(2):TRJFAS20576. https://doi.org/10.4194/TRJFAS20576
[25] Bucklin, A., Steinke, D., and Blanco-Bercial, L., (2011). DNA barcoding of marine Metazoa. Annual Review of Marine Science, 3:471–508.
[26] Li, M., Schönberg, A., Schaefer, M., et al., (2010). Detecting heteroplasmy from mtDNA genomes. American Journal of Human Genetics, 87(2):237–249.
[27] Ivanova, N.V., Zemlak, T.S., Hanner, R.H., and Hebert, P.D.N. (2007). Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7(4):544–548.
[28] Ward, R.D., Costa, F.O., Holmes, B.H., and Steinke, D., (2005). DNA barcoding of fishes. Philosophical Transactions of the Royal Society B, 360:1847–1857.
[29] Ward, R.D., Hanner, R., and Hebert, P.D.N., (2009). The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology, 74:329–356.
[30] Ward, R.D., Costa, F.O., Holmes, B.H., and Steinke, D., (2008). DNA barcoding of shared fish species from the North Atlantic and Australasia. Aquatic Biology, 3:71–78.
[31] Zemlak, T.S., Ward, R.D., Connell, A.D., Holmes, B.H., and Hebert, P.D.N., (2009). DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources, 9(1):237–242.
[32] Hubert, N., Hanner, R., Holm, E., et al., (2008). Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE, 3(6):e2490.