References
[1] Wanzlick, H.W. and Schönherr, H.J., (1968). Direct synthesis of a mercury salt-carbene complex. Angewandte Chemie International Edition in English, 7(2):141-142.
[2] Öfele, K., (1968). 1, 3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer Übergangsmetall-carben-komplex. Journal of Organometallic Chemistry, 12(3):P42-P43.
[3] Hermann, W., Weskamp, T., and Bohm, V.P., (2001). Metal complexes of stable carbenes. Advances in organometallic chemistry, 48:1-71.
[4] Ezugwu, C.I., Kabir, N.A., Yusubov, M., and Verpoort, F., (2016). Metal–organic frameworks containing N-heterocyclic carbenes and their precursors. Coordination Chemistry Reviews, 307:188-210.
[5] De Fremont, P., Marion, N., and Nolan, S.P., (2009). Carbenes: Synthesis, properties, and organometallic chemistry. Coordination Chemistry Reviews, 253(7-8):862-892.
[6] Torborg, C. and Beller, M., (2009). Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Advanced Synthesis & Catalysis, 351(18):3027-3043.
[7] Shaughnessy, K.H., (2006). Beyond TPPTS: new approaches to the development of efficient palladium-catalyzed aqueous-phase cross-coupling reactions. European journal of organic chemistry, 2006(8):1827-1835.
[8] Valentine, J.D.H. and Hillhouse, J.H., (2003). Electron-rich phosphines in organic synthesis II. Catalytic applications. Synthesis, 2003(16):2437-2460.
[9] Diez-Gonzalez, S., Marion, N., and Nolan, S.P., (2009). N-heterocyclic carbenes in late transition metal catalysis. Chemical Reviews, 109(8):3612-3676.
[10] Shaughnessy, K.H. and DeVasher, R.B., (2005). Palladium-catalyzed cross-coupling in aqueous media: recent progress and current applications. Current Organic Chemistry, 9(7):585-604.
[11] Schaper, L.A., Hock, S.J., Herrmann, W.A., and Kuehn, F.E., (2013). Synthesis and application of water-soluble NHC transition-metal complexes. Angewandte Chemie International Edition, 52(1):270-289.
[12] Simon, M.O. and Li, C.J., (2012). Green chemistry oriented organic synthesis in water. Chemical Society Reviews, 41(4):1415-1427.
[13] Aravinda Reddy, P., Babul Reddy, A., Ramachandra Reddy, G., and Subbarami Reddy, N., (2013). Suzuki–Miyaura Cross-Coupling Reaction of Naphthyl Triflate with Indole Boronic Acids Catalyzed by a Recyclable Polymer-Supported N-Heterocyclic Carbene–Palladium Complex Catalyst: Synthesis of Naphthalene-Linked Bis-Heterocycles. Journal of Heterocyclic Chemistry, 50(6):1451-1456.
[14] Chinchilla, R. and Nájera, C., (2007). The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chemical reviews, 107(3):874-922.
[15] Herrmann, W.A., Böhm, V.P., Gstöttmayr, C.W., Grosche, M., Reisinger, C.P., and Weskamp, T., (2001). Synthesis, structure and catalytic application of palladium (II) complexes bearing N-heterocyclic carbenes and phosphines. Journal of Organometallic Chemistry, 617:616-628.
[16] Liao, C.Y., Chan, K.T., Tu, C.Y., Chang, Y.W., Hu, C.H., and Lee, H.M., (2009). Robust and Electron-Rich cis-Palladium (II) Complexes with Phosphine and Carbene Ligands as Catalytic Precursors in Suzuki Coupling Reactions. Chemistry–A European Journal, 15(2):405-417.
[17] Boubakri, L., Yasar, S., Dorcet, V., Roisnel, T., Bruneau, C., Hamdi, N., and Özdemir, I., (2017). Synthesis and catalytic applications of palladium N-heterocyclic carbene complexes as efficient pre-catalysts for Suzuki–Miyaura and Sonogashira coupling reactions. New Journal of Chemistry, 41(12):5105-5113.
[18] Aktaş, A., Celepci, D.B., Gök, Y., and Aygün, M., (2018). 2-Hydroxyethyl-Substituted (NHC) Pd (II) PPh3 Complexes: Synthesis, Characterization, Crystal Structure and Its Application on Sonogashira Cross-Coupling Reactions in Aqueous Media. ChemistrySelect, 3(39):10932-10937.
[19] Türker, F., Bereket, İ., Celepci, D.B., Aktaş, A., and Gök, Y., (2020). New Pd-PEPPSI complexes bearing meta-cyanobenzyl-Substituted NHC: Synthesis, characterization, crystal structure and catalytic activity in direct C–H arylation of (Hetero) arenes with aryl bromides. Journal of Molecular Structure, 1205:127608.
[20] Erdemir, F., Aktaş, A., Barut Celepci, D., and Gök, Y., (2020). New (NHC) Pd (II)(PPh3) complexes: synthesis, characterization, crystal structure and its application on Sonogashira and Mizoroki–Heck cross-coupling reactions. Chemical Papers, 74(1):99-112.
[21] Lee, J.Y., Lee, J.Y., Chang, Y.Y., Hu, C.H., Wang, N.M., and Lee, H.M., (2015). Palladium complexes with tridentate N-heterocyclic carbene ligands: Selective “normal” and “abnormal” bindings and their anticancer activities. Organometallics, 34(17):4359-4368.
[22] Hussaini, S.Y., Haque, R.A., Asekunowo, P.O., Majid, A.A., Agha, M.T., and Razali, M.R., (2017). Synthesis, characterization and anti-proliferative activity of propylene linked bis-benzimidazolium salts and their respective dinuclear Silver (I)-N-heterocyclic carbene complexes. Journal of Organometallic Chemistry, 840:56-62.
[23] Vyboishchikov, S.F. and Thiel, W., (2005). Ring-Closing Olefin Metathesis on Ruthenium Carbene Complexes: Model DFT Study of Stereochemistry. Chemistry–A European Journal, 11(13):3921-3935.
[24] Straub, B.F., (2005). Origin of the high activity of second-generation Grubbs catalysts. Angewandte Chemie International Edition, 44(37):5974-5978.
[25] García-Cuadrado, D., De Mendoza, P., Braga, A.A., Maseras, F., and Echavarren, A.M., (2007). Proton-abstraction mechanism in the palladium-catalyzed intramolecular arylation: substituent effects. Journal of the American Chemical Society, 129(21):6880-6886.
[26] Chinchilla, R. and Nájera, C., (2007). The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chemical reviews, 107(3):874-922.
[27] Amatore, C., Bensalem, S., Ghalem, S., and Jutand, A., (2004). Mechanism of the carbopalladation of alkynes by aryl-palladium complexes. Journal of organometallic chemistry, 689(24):4642-4646.