References
[1] Garcia-Galiano, D., Navarro, V.M., Gaytan, F., and Tena-Sempere, M., (2010). Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. Journal of Molecular Endocrinology, 45:281–290.
[2] Kerbel, B. and Unniappan, S., (2012). Nesfatin-1 suppresses energy intake, co-localises ghrelin in the brain and gut and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. Journal of Neuroendocrinology, 24:366-377.
[3] Oh-I, S., Shimizu, H., Satoh, T., Okada, S., Adachi, S., Inoue, K., Eguchi, H., Yamamoto, M., Imaki, T., Hashimoto, K., Tsuchiya, T., Monden, T., Horiguchi, K., Yamada, M., and Mori, M., (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature, 443:709–712.
[4] Maejima, Y., Sedbazar, U., Suyama, S., Kohno, D., Onaka, T., Takano, E., Yoshida, N., Koike, M., Uchiyama, Y., Fujiwara, K., Yashiro, T., Horvath, T.L., Dietrich, M.O., Tanaka, S., Dezaki, K., Oh-I, S., Hashimoto, K., Shimizu, H., Nakata, M., Mori, M., and Yada, T., (2009). Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metabolism, 10:355–365.
[5] Stengel, A., Goebel, M., Yakubov, I., Wang, L., Witcher, D., Coskun, T., Taché, Y., Sachs, G., and Lambrecht, N.W., (2009). Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150:232–238.
[6] Gonzalez, R., Kerbel, B., Chun, A., and Unniappan, S., (2010). Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS ONE 5(2):e15201.
[7] Gonzalez, R., Perry, R.L.S., Gao, X., Gaidhu, M.P., Tsushima, R.G. Ceddia, R.B., and Unniappan, S., (2011a). Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats. Endocrinology, 152:3628–3637.
[8] Gonzalez, R., Shepperd, E., Thiruppugazh, V., Lohan, S., Grey, C.L., Chang, J.P., and Unniappan, S., (2012). Nesfatin-1 regulates the hypothalamo-pituitary-ovarian axis of fish. Biology of Reproduction, 87:1-11.
[9] Stengel, A. and Tache, Y., (2011). Nesfatin-1-an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology, 152:4033–4038.
[10] Gonzalez, R., Mohan, H., and Unniappan, S., (2011b). Nucleobindins: bioactive precursor proteins encoding putative endocrine factors?. General and Comparative Endocrinology 176:341–346.
[11] Cowley, M.A. and Grove, K.L., (2006). To be or NUCB2, is nesfatin the answer?. Cell Metabolism, 4:421–422.
[12] Crown, A., Clifton, D.K., and Steiner, R.A., (2007). Neuropeptide signaling in the integration of metabolism and reproduction. Neuroendocrinology, 86:175–182.
[13] Shimizu, H., Oh-I, S., Hashimoto, K., Nakata, M., Yamamoto, S., Yoshida, N., Eguchi, H., Kato, I., Inoue, K., Satoh, T., Okada, S., Yamada, M., Yada T., and Mori, M., (2009). Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin independent mechanism. Endocrinology, 150:662–671.
[14] Su, Y., Zhang, J., Tang, Y., Bi, F., and Liu, J.N., (2010). The novel function of nesfatin-1: anti-hyperglycemia. Biochemical and Biophysical Research Communications, 391:1039–1042.
[15] Atsuchi, K., Asakawa, A., Ushikai, M., Ataka, K., Tsai, M., Koyama, K., Sato, Y., Kato, I., Fujimiya, M., and Inui, A., (2010). Centrally administered nesfatin-1 inhibits feeding behavior and gastroduodenal motility in mice. Neuroreport 21:1008–1011.
[16] Yosten, G.L. and Samson, W.K., (2010). The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298:1642–1647.
[17] Goebel, M., Stengel, A., Wang, L., Tache, Y., (2011). Central nesfatin-1 reduces the nocturnal food intake in mice by reducing meal size and increasing intermeal intervals. Peptides, 32:36–43.
[18] Mohan, H., Unniappan, S., (2013). Phylogenetic aspects of nucleobindin-2/nesfatin-1. Current pharmaceutical design 19:6929–6934.
[19] Lin, F., Zhou, C., Chen, H., Wu, H., Xin, Z., Liu, J., Gao, Y., Yuan, D., Wang, T., Wei, R., Chen, D., Yang, S., Wang, Y., Pu, Y., and Li, Z., (2014). Molecular characterization, tissue distribution and feeding related changes of NUCB2A/nesfatin-1 in Ya-fish (Schizothorax prenanti). Gene, 536:238-246.
[20] Hatef, A., Shajan, S., and Unniappan, S., (2015). Nutrient status modulates the expression of nesfatin-1 encoding nucleobindin 2A and 2B mRNAs in zebrafish gut, liver and brain. General and Comparative Endocrinology, 215:51-60.
[21] Caldwell, L.K., Pierce, A.L., Riley, A.G., Duncan, C.A., and Nagler, J.J., (2014). Plasma nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss). PLoS ONE 9:85700.
[22] Fatma Caf, F., Köprücü, S., Algül, S., Koyun, M., and Atıcı, A.A., (2018). The Correlation between the Differences in NUCB2/Nesfatin (NES) Peptide Levels and Body Weight, Lenght and Gender in Alburnus tarichi. Turkish Journal of Fisheries and Aquatic Sciences, 18:127-130.
[23] Kuru, M., (1980). Key to The Inland Water Fishes of Türkiye, Part I, II, III. Hacettepe Bulletin of Natural Sciences and Engineering, 9:103–133.
[24] Zhou, J.F., Wu, Q.J., Ye, Y.Z., and Tong, J.G., (2003). Genetic divergence between Cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasis on origin of European domestic carp. Genetica, 119:93–97.
[25] Vinodhini, R. and Narayanan, M., (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science&Technology, 5:179–182.
[26] Coad, B.W., (1995). Freshwater fishes of Iran. Acta Sci Natura Aca Sci Bohem Brno, 29:1–164.
[27] Ündar, L., Akpinar, M.A., Yanikoğlu, A., (1990). “Doctor fish” and psoriasis. Lancet, 335:470-471.
[28] Huising, M.O., Geven, E.J., Kruiswijk, C.P., Nabuurs, S.B., Stolte, E.H., Spanings, F.A., Verburg-van, Kemenade, BM., and Flik, G., (2006). Increased leptin expression in common Carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation. Endocrinology, 147(12):5786-5797.
[29] Köprücü, S. and Algül, S., (2015). Investigation of the leptin levels in the blood serum of Cyprinus carpio (Linnaeus, 1758) and Capoeta trutta (Heckel, 1843). Journal of Animal Physiology and Animal Nutrition, 99(3):430-435.
[30] Köprücü, S. and Algül, S., (2015). Comparatively examining of the apelin-13 levels in the Capoeta trutta (Heckel, 1843) and Cyprinus carpio (Linnaeus, 1758). Journal of Animal Physiology and Animal Nutrition, 99(2):210-214.
[31] Kono, T., Kitao, Y., Sonoda, K., Nomoto, R., Mekata, T., and Sakai M., (2008). Identfication and expression analysis of ghrelin gene in common carp, Cyprinus carpio Fisheries Science, 74:603–612.
[32] Tutar, Y. and Okan, S., (2012). Heat shock protein 70 purification and characterization from Cyprinion macrastomus macrastomus and Garra rufa obtusa. Journal of Thermal Biology, 37:95–99.
[33] Li, Q.C., Wang, H.Y., Chen, X., Guan, H.Z., and Jiang, Z.Y., (2010). Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrient-related fluctuation of nesfatin-1 level in normal humans. Regulatory Peptides, 159:72-77.
[34] Sanchez-Lasheras, C., Konner, A.C., and Bruning, J.C., (2010). Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Frontiers in Neuroendocrinology, 31:4–15.