Authors |
|
|||||||||||
|
||||||||||||
Supporting Institution |
: | |||||||||||
|
||||||||||||
Project Number |
: | |||||||||||
|
||||||||||||
Thanks |
: |
Cover Download | Context Page Download |
Jamal M. Khatib 1 , L Wright 2 , Pal S. Mangat 3
This paper reports results on the porosity and pore size distribution of cement paste containing varying amounts of simulated desulphurised waste (SDW). The water to binder ratio was 0.5. The binder consists of cement and SDW. The SDW is a combination of fly ash and gypsum ranging from 0-100%. Cement in the pastes was partially replaced with 25% SDW (by weight). The porosity and pore size distribution of cement pastes at 90 days of curing is reported. Increasing the amount of gypsum up does not change the pore volume, however, there is tendency of obtaining coarser pore structure in the presence of gypsum.
Keywords
Kükürt aty?y,
Uçucu kül,
Alçy,
Porozite,
Bo?luk Orany Da?ylymy,
Jamal M. Khatib 1 , L Wright 1 , Pal S. Mangat 1
This paper reports results on the porosity and pore size distribution of cement paste containing varying amounts of simulated desulphurised waste (SDW). The water to binder ratio was 0.5. The binder consists of cement and SDW. The SDW is a combination of fly ash and gypsum ranging from 0-100%. Cement in the pastes was partially replaced with 25% SDW (by weight). The porosity and pore size distribution of cement pastes at 90 days of curing is reported. Increasing the amount of gypsum up does not change the pore volume, however, there is tendency of obtaining coarser pore structure in the presence of gypsum.
Keywords
Desulphurised Waste,
FGD Waste,
Fly Ash,
Gypsum,
Pore Size Distribution,
Authors |
|
|||||||||||
|
||||||||||||
Supporting Institution |
: | |||||||||||
|
||||||||||||
Project Number |
: | |||||||||||
|
||||||||||||
Thanks |
: |